
www.manaraa.com

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3 1

A Survey of Web Information Extraction Systems
Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, Khaled Shaalan

Abstract—The Internet presents a huge amount of useful information which is usually formatted for its users, which makes it difficult
to extract relevant data from various sources. Therefore, the availability of robust, flexible Information Extraction (IE) systems that
transform the Web pages into program-friendly structures such as a relational database will become a great necessity. Although
many approaches for data extraction from Web pages have been developed, there has been limited effort to compare such tools.
Unfortunately, in only a few cases can the results generated by distinct tools be directly compared since the addressed extraction
tasks are different. This paper surveys the major Web data extraction approaches and compares them in three dimensions: the task
domain, the automation degree, and the techniques used. The criteria of the first dimension explain why an IE system fails to handle
some Web sites of particular structures. The criteria of the second dimension classify IE systems based on the techniques used. The
criteria of the third dimension measure the degree of automation for IE systems. We believe these criteria provide qualitatively
measures to evaluate various IE approaches.

Index Terms—Information Extraction, Web Mining, Wrapper, Wrapper Induction.

—————————— ——————————

1 INTRODUCTION

HE explosive growth and popularity of the world-wide
web has resulted in a huge amount of information
sources on the Internet. However, due to the heteroge-

neity and the lack of structure of Web information sources,
access to this huge collection of information has been lim-
ited to browsing and searching. Sophisticated Web mining
applications, such as comparison shopping robots, require
expensive maintenance to deal with different data formats.
To automate the translation of input pages into structured
data, a lot of efforts have been devoted in the area of infor-
mation extraction (IE). Unlike information retrieval (IR),
which concerns how to identify relevant documents from a
document collection, IE produces structured data ready for
post-processing, which is crucial to many applications of
Web mining and searching tools.

Formally, an IE task is defined by its input and its extrac-
tion target. The input can be unstructured documents like
free text that are written in natural language (e.g. Figure 1)
or the semi-structured documents that are pervasive on the
Web, such as tables or itemized and enumerated lists (e.g.
Figure 2). The extraction target of an IE task can be a rela-
tion of k-tuple (where k is the number of attributes in a re-
cord) or it can be a complex object with hierarchically or-
ganized data. For some IE tasks, an attribute may have zero
(missing) or multiple instantiations in a record. The diffi-
culty of an IE task can be further complicated when various
permutations of attributes or typographical errors occur in

the input documents.
Programs that perform the task of IE are referred to as

extractors or wrappers. A wrapper was originally defined
as a component in an information integration system which
aims at providing a single uniform query interface to access
multiple information sources. In an information integration
system, a wrapper is generally a program that “wraps” an
information source (e.g. a database server, or a Web server)
such that the information integration system can access that
information source without changing its core query answer-
ing mechanism. In the case where the information source is
a Web server, a wrapper must query the Web server to col-
lect the resulting pages via HTTP protocols, perform infor-
mation extraction to extract the contents in the HTML
documents, and finally integrate with other data sources.
Among the three procedures, information extraction has
received most attentions and some use wrappers to denote
extractor programs. Therefore, we use the terms extractors
and wrappers interchangeably.

Wrapper induction (WI) or information extraction (IE)
systems are software tools that are designed to generate
wrappers. A wrapper usually performs a pattern matching
procedure (e.g., a form of finite-state machines) which relies
on a set of extraction rules. Tailoring a WI system to a new
requirement is a task that varies in scale depending on the
text type, domain, and scenario. To maximize reusability
and minimize maintenance cost, designing a trainable WI
system has been an important topic in the research fields of
message understanding, machine learning, data mining,
etc. The task of Web IE, that we are concerned in this paper,
differs largely from traditional IE tasks in that traditional IE
aims at extracting data from totally unstructured free texts
that are written in natural language. Web IE, in contrast,
processes online documents that are semi-structured and
usually generated automatically by a server-side applica-
tion program. As a result, traditional IE usually takes ad-
vantage of NLP techniques such as lexicons and grammars,
whereas Web IE usually applies machine learning and pat-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• Chia-Hui Chang is with the Department of Computer Science and Informa-
tion Engineering, National Central University, No. 300, Jungda Rd.,
Jhongli City, Taoyuan, Taiwan 320, R.O.C., E-mail: chia@csie.ncu.edu.tw.

• Mohammed Kayed is with the Mathematics Department, Beni-Suef Uni-
versity, Egypt, E-mail: mskayed@yahoo.com.

• Moheb Ramzy Girgis is with the Department of Computer Science, Minia
University, El-Minia, Egypt, E-mail: mrgirgis@mailer.eun.eg.

• Khaled Shaalan is with The British University in Dubai (BUiD), United
Arab Emirates, E-mail: khaled.shaalan@buid.ac.ae.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

T

www.manaraa.com

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

tern mining techniques to exploit the syntactical patterns or
layout structures of the template-based documents.

In this paper, we focus on IE from semi-structured
documents and discuss only those that have been used for
Web data. We will compare different WI systems using fea-
tures from three dimensions which we regard as criteria for
comparing and evaluating WI systems. The rest of the pa-
per is organized as follows. Section 2 introduces related
work on WI system taxonomy, which we summarize into
three dimensions of evaluating WI systems. Section 3 sug-
gests the criteria for each dimension. We make a survey of
contemporary IE tools in Section 4 with a running example
to make such tools more understandable. A comparative
analysis of the surveyed IE tools from the three dimensions
is presented in Section 5. Finally, the conclusions are made
in Section 6.

2 RELATED WORK
In the past few years, many approaches to WI systems, in-
cluding machine learning and pattern mining techniques,
have been proposed, with various degrees of automation.
In this section we survey the previously proposed taxono-
mies for IE tools developed by the main researchers.

The Message Understanding Conferences (MUCs) have
inspired the early work in IE. There are five main tasks de-
fined for text IE, including named entity recognition,
coreference resolution, template element construction, tem-
plate relation construction and scenario template produc-
tion. The significance of the MUCs in the field of IE moti-
vates some researchers to classify IE approaches into two
different classes: MUC Approaches (e.g., AutoSolg [1], LIEP
[2], PALKA [3], HASTEN [4], and CRYSTAL [5]) and Post-
MUC Approaches (e.g., WHISK [6], RAPIER [7], SRV [8],
WIEN [9], SoftMealy [10] and STALKER [11]).

Hsu and Dung [10] classified wrappers into 4 distinct
categories, including hand-crafted wrappers using general
programming languages, specially designed programming
languages or tools, heuristic-based wrappers, and WI ap-
proaches. Chang [12] followed this taxonomy and com-
pared WI systems from the user point of view and dis-
criminated IE tools based on the degree of automation.
They classified IE tools into four distinct categories, includ-
ing systems that need programmers, systems that need an-
notation examples, annotation-free systems and semi-
supervised systems.

Muslea, who maintains the RISE (Repository of Online
Information Sources Used in Information Extraction Tasks)
Web site, classified IE tools into 3 different classes according
to the type of input documents and the struc-
ture/constraints of the extraction patterns [11]. The first
class includes tools that process IE from free text using ex-
traction patterns that are mainly based on syntac-
tic/semantic constraints. The second class is called Wrapper
induction systems which rely on the use of delimiter-based
rules since the IE task processes online documents such as
HTML pages. Finally, the third class also processes IE from
online documents; however the patterns of these tools are
based on both delimiters and syntactic/semantic con-
straints.

Kushmerick classified many of the IE tools into two dis-
tinct categories finite-state and relational learning tools [13].
The extraction rules in finite-state tools are formally equiva-
lent to regular grammars or automata, e.g WIEN, SoftMealy
and STALKER, while the extraction rules in relational learn-
ing tools are essentially in the form of Prolog-like logic pro-
grams, e.g. SRV, Crystal, WebFoot [14], Rapier and Pinoc-
chio [15].

Laender proposed a taxonomy for data extraction tools
based on the main technique used by each tool to generate
a wrapper [16]. These include languages for wrapper de-
velopment (e.g., Minerva [17], TSIMMIS [18] and WebOQL
[19]), HTML-aware tools (e.g., W4F [20], XWrap [21] and
RoadRunner [22]), NLP-based tools (e.g., WHISK, RAPIER
and SRV), Wrapper induction tools (e.g., WIEN, SoftMealy
and STALKER), Modeling-based tools (e.g., NoDoSE [23]
and DEByE [24],[25], and Ontology-based tools (e.g., BYU
[26]). Laender compared among the tools by using the fol-
lowing 7 features: degree of automation, support for com-
plex objects, page contents, availability of a GUI, XML out-
put, support for non-HTML sources, resilience, and adap-
tiveness.

Sarawagi classified HTML wrappers into 3 categories ac-
cording to the kind of extraction tasks [27]. The first cate-
gory, record-level wrappers, exploits regularities to dis-
cover record boundaries and then extract elements of a sin-
gle list of homogeneous records from a page. The second
category, page-level wrappers, extracts elements of multiple
kinds of records. Finally, the site-level wrappers populate a
database from pages of a Web site.

Fig. 1. A free text IE task which is specified by the input (left) and its
output (right).

Fig. 2. A Semi-structured page containing data records (in rectangular
box) to be extracted.

Data
Record

Data
Record

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 3

Kuhlins and Tredwell classified the toolkits for generat-
ing wrappers into two basic categories, based on commer-
cial and non-commercial availability [28]. They also con-
trasted the toolkits by using some features such as output
methods, interface type, web crawling capability and GUI
support.

This survey shows three main dimensions for evaluating
IE systems. First, the distinction of free text IE and online
documents made by Muslea, the three-level of extraction
tasks proposed by Sarawagi, and the capabilities of han-
dling non-HTML sources, together suggest the first dimen-
sion, which concerns the difficulty or the task domain that
an IE task refers to. Second, the taxonomy of regular ex-
pression rules or Prolog-like logic rules, and that of deter-
ministic finite-state transducer or probabilistic hidden
Markov models, prompts the second dimension which re-
lates the underlying techniques used in IE systems. Finally,
the categorizations of programmer-involved, learning-
based or annotation-free approaches imply the third di-
mension which concerns the degree of automation. These
three dimensions are discussed in the next section.

3 THREE DIMENSIONS FOR COMPARING IE SYSTEMS
Continuing our survey of various taxonomies, there are
three dimensions to be used in the comparison. The first
dimension evaluates the difficulty of an IE task, which can
be used to answer the question “why an IE system fails to
handle some Web sites with particular structures?” The
second dimension compares the techniques used in differ-
ent IE systems. The third dimension evaluates both the ef-
fort made by the user for the training process and the ne-
cessity to port an IE system across different domains. From
the user's point of view, the second dimension is less impor-
tant. However, researchers might get an overview of which
machine-learning or data mining technologies have been
used for WI through the comparison. In this section we de-
scribe each of these dimensions, and for each one we in-
clude a set of features that can be used as criteria for com-
paring and evaluating IE systems from the dimension pro-
spective.

3.1 Task difficulties
The input file of an IE task may be structured, semi-
structured or free-text. As shown in Figure 3, the definition
of these terms varies across research domains. Soderland
[14] considered free-texts e.g. news article, that are written
in natural languages are unstructured, postings on news-
group (e.g. apartment rentals), medical records, equipment
maintenance logs are semi-structured, while HTML pages
are structured. However, from the viewpoint of database
researchers [29], the information stored in databases is
known as structured data; XML documents are semi-
structured data for the schema information is mixed in with
the data values, while Web pages in HTML are unstruc-
tured because there is very limited indication of the type of
data. From our viewpoints, XML documents are considered
as structured since there are DTD or XML schema available
to describe the data. Free texts are unstructured since they
require substantial natural language processing. For the
large volume of HTML pages on the Web, they are consid-
ered as semi-structured [10] since the embedded data are
often rendered regularly via the use of HTML tags.

Thus, semi-structured inputs are the documents of a
fairly regular structure and data in them may be presented
in HTML or non-HTML format. One source of these large
semi-structured documents is from the deep Web, which
includes dynamic Web pages that are generated from struc-
tured databases with some templates or layouts. For exam-
ple, the set of book pages from Amazon has the same layout
for the authors, title, price, comments, etc. Web pages that
are generated from the same database with the same tem-
plate (program) form a page class. There are also semi-
structured HTML pages generated by hand. For example,
the publication lists from various researchers’ homepages
all have title and source for each single paper, though they
are produced by different people. For many IE tasks, the
input are pages of the same class, still some IE tasks focus
on information extraction from pages across various Web
sites.

In addition to the categorization by input documents, an
IE task can be classified according to the extraction target.
For example, Sarawagi classified HTML wrappers into re-
cord-level, page-level and site-level IE tasks. Record-level
wrappers discover record boundaries and then divide them
into separate attributes; page-level wrappers extract all data
that are embedded in one Web page, while site-level wrap-
pers populate a database from pages of a Web site, thus the
attributes of an extraction object are scattered across pages
of a Web site. Academic researchers have devoted much
effort to develop record-level and page-level data extrac-
tion, whereas industrial researchers have more interest in
complete suites which support site-level data extraction.

There are various ways to describe the extraction targets
in a page. The most common structure (as proposed in
NoDoSE, DEByE, and Stalker, etc.) is a hierarchical tree
where the leaf nodes are basic types while the internal
nodes are list of typles. A data object may be of a
plain/nested structure. A plain text data-object has only
one internal node (the root), while a nested data-object con-
tains more than two levels and internal nodes. Since these
Web pages are intended to be human readable, tuples of the

Fig. 3. Structurization of various documents.

www.manaraa.com

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

same list, or elements of a tuple are often expressly sepa-
rated or delimited for easy visualization. However, the
presentation formats or the set of attributes that form a
data-object is subject to the following variations:

• An attribute may have zero or more values (list of 1-
tuple) in a data-object. If the attribute has zero value,
it is called a missing attribute; if it has more than one
value, it is called a multi-valued attribute. The name
of a book’s author may be an example of multi-
valued attribute, whereas a special offer, which is
available only for certain books, is an example of
missing attribute.

• The set of attributes (A1, A2, …, Ak) may have multi-
ple ordering, i.e., an attribute Ai may have variant
positions in different instances of a data-object; and
we call this attribute a multi-ordering attribute. For
example, a movie site might list the release date be-
fore the title for movies prior to 1999, but after the ti-
tle for recent movies.

• An attribute may have variant formats along with
different instances of a data-object. If the format of
an attribute is not fixed, we might need disjunctive
rules to generalize all cases. For example, an e-
commerce site might list prices in bold face, except
for sale prices which are in red. So, price would be
an example of a variant-format attribute in this site.
On the other hand, different attributes in a data-
object may have the same format, especially in table
presentation, where single <TD> tags are used to
present various attributes. In such cases, order of at-
tributes is the key information to distinguish various
attributes. However, if missing attributes occur or
multi-ordering exists, the extraction rules for these
attributes need to be revised.

• Most IE systems handle input documents as strings
of tokens for they are easier to process than strings
of characters. Depending on the tokenization meth-
ods used, sometimes an attribute can not be decom-
posed into individual tokens. Such an attribute is
called an untokenized attribute. For example, in a col-
lege course catalogue the department code has no
delimiter separated it from the course number in
strings such as “COMP4016” or “GEOL2001”. The
granularity of extraction targets affects the deci-
sion/selections of tokenization schemes for an IE
system.

The combination of various input documents and varia-
tion of extraction targets causes different degrees of task
difficulties. Since various IE systems are designed for vari-
ous IE tasks, it is not fair to compare them directly. How-
ever, analyzing what task an IE system targets and how it
accomplishes the task, can be used to evaluate this system
and possibly extend to other task domains.

3.2 The Techniques Used
For a wrapper to extract data from input it needs to token-
ize the input string, apply the extraction rules for each at-
tribute, assemble the extracted values into records, and re-

peat the process for all object instances in the input. There
are various granularities for input string tokenization, in-
cluding tag-level and word-level encoding. The former en-
coding translates each HTML tag as a token and translates
any text string between two tags as a special token, while
the later, word-level, treats each word in a document as a
token. Extraction rules can be induced by top-down or bot-
tom-up generalization, pattern mining, or logic program-
ming. The type of extraction rules may be expressed using
regular grammars or logic rules. Some of the WI systems
use path-expressions of the HTML parse tree path (e.g.
html.head.title, and html->table[0]) as the features in ex-
traction rules; some use syntactic or semantic constraints,
such as POS-tags and WordNet semantic class; while others
use delimiter-based constraints, such as HTML tags or lit-
eral words, in the extraction rules. The extractor architec-
ture may require single or multiple passes over the pages.

In summary, the features for comparing WI systems
from the perspective of techniques used include: tokeniza-
tion/encoding schemes, scan pass, extraction rule type, features
involved, and learning algorithm.

3.3 Automation Degree
As described above, a wrapper program has many phases
to be accomplished: collecting training pages, labeling
training examples, generalizing extraction rules, extracting
the relevant data, and outputting the result in an appropri-
ate format. Most researches focus on the intermediate 3
phases which involve the major extraction process, while
some provide a total solution including a crawler or robot
for collecting training pages (the first phase) and an output
support in XML format or back-end relational database for
further information integration (the final phase). Generally
speaking, the labeling phase defines/specifies the output of
an extraction task and requires the involvement of users.
However, some WI systems do not require the collected
training examples to be labeled before the learning stage,
instead, the labeling or annotation of the extracted data can
be done after the generation of extraction rules (with or
without users). This brings up a major difference in auto-
mation: for some WI systems, the user needs to label train-
ing examples; for others, the user simply waits for the sys-
tems to clean the pages and extract the data. However, the
automation does not come without reason. The cost is the
applicability of these approaches to other task domain.
Some even have limitation in the number and the type of
input pages.

In summary, the features we consider from the automa-
tion degree prospective include: user expertise needed for
labeling data or for generating the extraction rules, applica-
bility of these approaches to other task domain, limitation
for the number/type of input, page-fetching support for col-
lecting training pages, output support and API support for
application integration.

4 SURVEY FOR CONTEMPORARY IE SYSTEMS

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 5

The goal of WI is to automatically generate a wrapper that
is used to extract the targets for an information resource.
Let us consider the way how user interacts with WI sys-
tems. Earlier systems are designed to facilitate program-
mers in writing extraction rules, while later systems intro-
duce machine learning for automatic rule generalization.
Therefore, the user interaction has evolved from writing
extraction rules to labeling target extraction data. In recent
years, more efforts are devoted to reducing labeling and
creating WI systems with unlabelled training examples.
Following this trend, we can classify WI systems into the
four classes manually-constructed IE Systems, supervised IE
Systems, semi-supervised IE Systems and unsupervised IE
Systems.

In this section we give a survey for most prominent and
contemporary IE approaches. To make such approaches
more understandable, we assume an IE task and describe
the generated wrapper that can be used to extract informa-
tion from other similar documents for each approach. Fig-
ure 4 shows four Web pages as the input of the IE task. The
desired output is the book title and the corresponding re-
views, including the reviewer name, rating and comments.

4.1 Manually-constructed IE systems
As shown on the right of Figure 5, in manually-constructed
IE systems, users program a wrapper for each Web site by
hand using general programming languages such as Perl or
by using special-designed languages. These tools require
the user to have substantial computer and programming
backgrounds, so it becomes expensive. Such systems in-
clude TSIMMIS, Minerva, Web-OQL, W4F and XWRAP.

TSIMMIS is one of the first approaches that give a frame-
work for manual building of Web wrappers [18]. The main
component of this project is a wrapper that takes as input a
specification file that declaratively states (by a sequence of
commands given by programmers) where the data of inter-
est is located on the pages and how the data should be
“packaged” into objects. For example, Figure 6(a) shows the
specification file for our IE task in Figure 4. Each command
is of the form: [variables, source, pattern], where source speci-
fies the input text to be considered, pattern specifies how to
find the text of interest within the source, and variables are a
list of variables that hold the extracted results. The special

symbol ‘*’ in a pattern means discard, and ‘#’ means save in
the variables. TSIMMIS then outputs data in Object Ex-
change Model (e.g. Figure 6(b)) that contains the desired
data together with information about the structure and the
contents of the result. TSIMMIS provides two important
operators: split and case. The split operator is used to divide
the input list element into individual elements (e.g. line 5).
The case operator allows the user to handle the irregulari-
ties in the structure of the input pages.

Minerva attempts to combine the advantages of a declara-
tive grammar-based approach with the flexibility of proce-
dural programming in handling heterogeneities and excep-
tions [17]. This is done by incorporating an explicit excep-
tion-handling mechanism inside a regular grammar. Excep-
tion-handling procedures are written in Minerva by using a
special language called Editor. The grammar used by Mi-
nerva is defined in an EBNF style where a set of produc-
tions is defined; each production rule defines the structure
of a non-terminal symbol (preceded by ‘$’) of the grammar.
For example, Figure 7 shows the set of productions that can
be used to extract (also, insert in a database) relevant at-
tributes for the defined IE task. As usual in EBNF notation,
expression [p] denotes an optional pattern p; expression (p)*
denotes that p may be repeated zero or more times. The
nonterminal productions $bName, $rName, $rate, and $text
immediately follow from their use in the definition of
$Book. Thus, book name is preceded by “Book
Name” and followed by “” as indicated by pattern
“*(?)” which matches every thing before tag . The
last production in Figure 7 defines a special non-terminal
$TP (Tuple Production), which is used to insert a tuple in
the database after each book has been parsed. For each pro-
duction rule, it is possible to add an exception handler con-
taining a piece of Editor code that can handles the irregu-
larities found in the Web data. Whenever the parsing of that
production rule fails, an exception is raised and the corre-

<html>1<body>2

 3 Book4 Name5 6 Databases
 7 Reviews8 9

 10

 11

12 Reviewer13 Name14 15 John
16 Rating17 18 7
19 Text20 < /b>21 . ..

 22

 23

</body> 24</html>25

<html>1<body>2

 3 Book4 Name5 6 Query Opt.
 7 Reviews8 9
 10
 11

12 Reviewer13 Name14 15 John
16 Rating17 18 8
19 Text20 < /b>21 . ..

 22

 23

</body> 24</html>25

<html>1<body>2
 3 Book4 Name5 6 Data Mining
 7 Reviews8 9
 10
 11

12 Reviewer13 Name14 15 Jeff
16 Rating17 18 2
19 Text20 21 ...

 22
 11

12 Reviewer13 Name14 15 Jane
16 Rating17 18 6
19 Text20 21 ...

 22
 23

</body>24</html>25

<html>1<body>2

 3 Book4 Name5 6 Transactions
 7 Reviews8 9
 10
 23
</body>24</html>25

(a: pe1)

(b: pe2)

(c: pe3) (d: pe4)

Fig. 4. A running example of four Web pages (pe1-pe4).

Labeled
Web Pages

User

Wrapper
Induction
System

GUI
User3

Wrapper
User

Extracted Data

Un-labeled
Training

Web Pages

Supervised
Manual

Semi -supervised
Un-supervised

Test
Page

GUI

Fig. 5. A general view of WI systems.

root complex {
 book_name string "Databases"
 reviews complex {
 Reviewer_Name string John
 Rating int 7
 Text string …
 }
}

1 [["root", "get('pe1.html')", "#"],
2 ["Book", "root" , "*<body >#</body>"],
3 ["BookName", "Book", "*#"],
4 ["Reviews", "Book ", "*#"],
5 ["_Reviewer", "split(Reviews, '')", "#"],
6 ["Reviewer", "_Reviewer[0:0]", "#"],
7 ["ReviewerName, Rating, Text", "Reviewer",
8 "*#*#*#*"]]

(a) (b)

Fig. 6. (a) A TSIMMIS specification file and (b) the OEM output.

www.manaraa.com

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

sponding exception handler is executed.

WebOQL is a functional language that can be used as query
language for the Web, for semistructured data and for web-
site restructuring [19]. The main data structure provided by
WebOQL is the hypertree. Hypertrees are arc-lableled or-
dered trees which can be used to model a relational table, a
Bibtex file, a directory hierarchy, etc. The abstraction level
of the data model is suitable to support collections, nesting,
and ordering. Figure 8 shows the hypertree for page pe1 of
the running example. As shown in the figure, the tree struc-
ture is similar to the DOM tree structure where arcs are la-
beled with records with three attributes Tag, Source, Text,
corresponding to tag name, the piece of HTML code, and
the text excluding markup, respectively. The main construct
provided by WebOQL is the familiar select-from-where.
The language has the ability to simulate all operations in
nested relational algebra and compute transitive closure on
an arbitrary binary relation. As an example, the following
query extracts the reviewer names “Jeff” and “Jane” from
page pe2, where quote and exclamation mark denote the first
subtree and the tail tree, respectively. The variables, de-
pending on the case, iterate over the simple trees or tail
trees of the hypertree specified after operator “in”.

Select [Z!’.Text]
From x in browse (“pe2.html”)’, y in x’, Z in y’
Where x.Tag = “ol” and Z.Text=”Reviewer Name”

In addition to manage the data using the hypertrees, the
language can also be used to Web restructuring making the
query result readable for other applications.

W4F (Wysiwyg Web Wrapper Factory) is a Java toolkit to
generate Web wrappers [20]. The wrapper development
process consists of three independent layers: retrieval, ex-
traction and mapping layers. In the retrieval layer, a to-be-
processed document is retrieved (from the Web through
HTTP protocol), cleaned and then fed to an HTML parser
that constructs a parse tree following the Document Object
Model (DOM). In the extraction layer, extraction rules are
applied on the parse tree to extract information and then
store them into the W4F internal format called Nested
String List (NSL). In the mapping layer, the NSL structures
are exported to the upper-level application according to
mapping rules. Extraction rules are expressed using the
HEL (HTML Extraction Language), which uses the HTML
parse tree (i.e. DOM tree) path to address the data to be

located. For example, to address the reviewer’s name “Jeff”
and “Jane” from pe2, we can use expression
<<html.body.ol[0].li[*].pcdata[0].txt>> where the symbol [*]
can match any number (in this case, 0 and 1). The language
also offers regular expressions and constraints to address
finer pieces of data. For example, users can use regular ex-
pression to match or split (following the Perl syntax) the
string obtained by DOM tree path. Finally, the fork operator
allows the construction of nested string list by following
multiple sub-paths at the same time. To assist the user ad-
dressing DOM tree path, the toolkit is designed with
wysiwyg (what you see is what you get) support via smart
wizards.

XWrap is a system that exploits formatting information in
Web pages to hypothesize the underlying semantic struc-
ture of a page [21]. It encodes the hypothetical structure and
the extraction knowledge of the web pages in a rule-based
declarative language designed specifically for XWrap. The
wrapper generation process includes two phases: structure
analysis, and source-specific XML generation. In the first
phase, XWrap fetches, cleans up, and generates a tree-like
structure for the page. The system then identifies regions,
semantic tokens of interest and useful hierarchical struc-
tures of sections of the page by interacting with users
through object (record) and element extraction steps. In the
second phase, the system generates a XML template file
based on the content tokens and the nesting hierarchy
specification, and then constructs a source-specific XML
generator. In a way, XWRap can be classified as supervised
WI systems for no rule writing is necessary; however, it
requires users’ understanding of the HTML parse tree, the
identification of the separating tags for rows and columns
in a table, etc. Thus, it is classified as systems that require
special expertise of users. On the other hand, no specific
learning algorithm is used here; the extraction rules are
mainly based on DOM-tree path addressing.

4.2 Supervised WI systems
As shown in the left-bottom of Figure 5, supervised WI sys-
tems take a set of web pages labeled with examples of the
data to be extracted and output a wrapper. The user pro-
vides an initial set of labeled examples and the system
(with a GUI) may suggest additional pages for the user to
label. For such systems, general users instead of program-

Page Book_Reviews
$Book_Reviews: <html><body> $Book </body></html>;
$Book: Book Name $bName Reviews
 [(Reviewer Name $rName

 Rating $rate Text $text $TP)*];
$bName: *(?);
$rName: *(?);
$rate: *(?);
$text: *(?);

$TP: {
$bName, $rName
$rate
$text

}
END

Fig. 7. A Minerva grammar in ENBF style.

Tag: Body,
Source: <Body>…</Body>
Text: Book Name …

Tag:
Source:Book Name
Text: Book Name

Tag: NOTAG
Source: Databases
Text: Database

Tag:
Source:Reviews
Text: Reviews

Tag: OL,
Source: …
Text: Reviewer Name …

Tag: LI,
Source: …
Text: Reviewer Name …

Tag: NOTAG
Source: John
Text: John

Tag:
Source: Reviewer Name
Text: Reviewer Name

Tag:
Source:Rating
Text: Rating

Tag: NOTAG
Source: 7
Text: 7

Tag:
Source:Text
Text: Text

Tag: NOTAG
Source: …
Text: …

Fig. 8. A WebOQL hypertree for the page pe1 in Figure 4.

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 7

mers can be trained to use the labeling GUI, thus reducing
the cost of wrapper generation. Such systems are SRV, RA-
PIER, WHISK, WIEN, STALKER, SoftMealy, NoDoSE and
DEByE.

SRV is a top-down relational algorithm that generates sin-
gle-slot extraction rules [8]. It regards IE as a kind of classi-
fication problem. The input documents are tokenized and
all substrings of continuous tokens (i.e. text fragments) are
labeled as either extraction target (positive examples) or not
(negative examples). The rules generated by SRV are logic
rules that rely on a set of token-oriented features (or predi-
cates). These features have two basic varieties: simple and
relational. A simple feature is a function that maps a token
into some discrete value such as length, character type (e.g.,
numeric), orthography (e.g., capitalized) and part of speech
(e.g., verb). A relational feature maps a token to another
token, e.g. the contextual (previous or next) tokens of the
input tokens. The learning algorithm proceeds as FOIL,
starting with entire set of examples and adds predicates
greedily to cover as many positive examples and as few
negative examples as possible. For example, to extract the
rating score for our running example, SRV might return
rule like Figure 9(a), which says rating is a single numeric
word and occurs within a HTML list tag.

RAPIER also focuses on field-level extraction but uses bot-
tom-up (compression-based) relational learning algorithm
[7], i.e. it begins with the most specific rules and then re-
placing them with more general rules. RAPIER learns sin-
gle slot extraction patterns that make use of syntactic and
semantic information including part-of-speech tagger or a
lexicon (WordNet). The extraction rules consist of three dis-
tinct patterns. The first one is the pre-filler pattern that
matches text immediately preceding the filler, the second
one is the pattern that match the actual slot filler, finally the
last one is the post-filler pattern that match the text imme-
diately following the filler. As an example, Figure 9(b)
shows the extraction rule for the book title, which is imme-
diately preceded by words “Book”, “Name”, and “”,
and immediately followed by the word “”. The “Filler
pattern” specifies that the title consists of at most two
words that were labeled as “nn” or “nns” by the POS tagger
(i.e., one or two singular or plural common nouns).

WIEN: Kushmerick identified a family of six wrapper
classes, LR, HLRT, OCLR, HOCLRT, N-LR and N-HLRT for
semi-structured Web data extraction [9]. WIEN focuses on
extractor architectures. The first four wrappers are used for
semi-structured documents, while the remaining two
wrappers are used for hierarchically nested documents. The
LR wrapper is a vector of 2K delimiters for a site containing

K attributes. For example, the vector (‘Reviewer name
’, ‘’, ‘Rating ’, ‘’, ‘Text ’, ‘’) can
be used to extract 3-slot book reviews for our running ex-
ample. The HLRT class uses two additional delimiters to
skip over potentially-confusing text in either the head or
tail of the page. The OCLR class uses two additional delim-
iters to identify an entire tuple in the document, and then
uses the LR strategy to extract each attribute in turn. The
HOCLRT wrapper combines the two classes OCLR and
HLRT. The two wrappers N-LR and N-HLRT are extension
of LR and HLRT and designed specifically for nested data
extraction. Note that, since WIEN assumes ordered attrib-
utes in a data record, missing attributes and permutation of
attributes can not be handled.

WHISK uses a covering learning algorithm to generate
multi-slot extraction rules for a wide variety of documents
ranging from structured to free text [6]. When applying to
free text, WHISK works best with input that has been anno-
tated by a syntactic analyzer and a semantic tagger. WHISK
rules are based on a form of regular expression patterns
that identify the context of relevant phrases and the exact
delimiters of those phrases. It takes a set of hand-tagged
training instances to guide the creation of rules and to test
the performance of the proposed rules. WHISK induces
rules top-down, starting from the most general rule that
covers all instances, and then extending the rule by adding
terms one at a time. For example, to generate 3-slot book
reviews, it start with empty rule “*(*)*(*)*(*)*”, where each
parenthesis indicates a phrase to be extracted. The phrase
within the first set of parentheses is bound to the first vari-
able $1, and the second to $2, and forth. Thus, the rule in
Figure 10 can be used to extract our 3-slot book reviews for
our running example. If part of the input remains after the
rule has succeeded, the rule is re-applied to the rest of the
input. Thus, the extraction logic is similar to the LR wrap-
per for WIEN.

NoDoSE: Opposed to WIEN, where training examples are
obtained from some oracles that can identify interesting
types of fields within a document, NoDoSE provides an
interactive tool for users to hierarchically decompose semi-
structured documents (including plain text or HTML pages)
[23]. Thus, NoDoSE is able to handle nested objects. The
system attempts to infer the format/grammar of the input
documents by two heuristic-based mining components: one
that mines text files and the other parses HTML code. Simi-
lar to WIEN, the mining algorithms try to find common
prefix and suffix as delimiters for various attributes. Al-
though it does not assume the order of attributes within a
record to be fixed, it seeks to find a totally consistent order-
ing for various attributes in a record. The result of this task
is a tree that describes the structure of the document. For
example, to generate a wrapper for the running example,
the user can interact with the NoDoSE GUI to decompose
the document as a record with two fields: a book title (an

BookTitle extraction rule:-

Pre-filler pattern
(1) word: Book
(2) word: Name
(3) word:

Rating extraction rule:-
 length (=1),
 every (numeric true),
 every (in_list true).

(a) (b)

Filler pattern
list: len: 2
Tag: [nn, nns]

Post -filler pattern
word:

Fig. 9. A SRV (a) and Rapier (b) extraction rules.

Pattern:: * ‘Reviewer Name ’ (Person) ‘’ * (Digit) ‘Text’(*) ‘’
Output :: BookReview {Name $1} {Rating $2} {Comment $3}

Fig. 10. A WHISK extraction rule.

www.manaraa.com

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

attribute of type string) and a list of Reviewer, which is in
turn a record of the three fields RName (string), Rate (inte-
ger), and Text (string). Next, NoDoSE then automatically
parses them and generates the extraction rules.

SoftMealy: In order to handle missing attributes and at-
tribute permutations in input, Hsu and Dung introduce the
idea of finite-state transducer (FST) to allow more variation
on extractor structures [10]. A FST consists of two different
parts: the body transducer, which extract the part of the page
that contains the tuples (similar to HLRT in WIEN), and the
tuple transducer which iteratively extracts the tuples from
the body. The tuple transducer accepts a tuple and returns
its attributes. Each distinct attribute permutation in the
page can be encoded as a successful path from start state to
the end state of the tuple transducer; and the state transi-
tions are determined by matching contextual rules that de-
scribe the context delimiting two adjacent attributes. Con-
textual rules consist of individual separators that represent
invisible borderlines between adjacent tokens; and an in-
ductive generalization algorithm is used to induce these
rules from training examples. Figure 11 shows an example
of FST that can be used to extract the attributes of the book
reviews: the reviewer name (N), the rating (R), and the
comment (T). In addition to the begin and end states, each
attribute, A , is followed by a dummy state, A . Each arc is
labeled with the contextual rule that enables the transition
and the tokens to output. For example, when the state tran-
sition reaches to the R state, the transducer will extract the
attribute R until it matches the contextual rules s<R, R >
(which is composed of s<R, R >L and s<R, R >R). The state
R and the end state are connected if we assume no com-
ment can occur.

STALKER is a WI system that performs hierarchical data
extraction [11]. It introduces the concept of embedded cata-
log (EC) formalism to describe the structure of a wide range
of semi-structured documents. The EC description of a page
is a tree-like structure in which the leaves are the attributes
to be extracted and the internal nodes are lists of tuples. For
each node in the tree, the wrapper needs a rule to extract
this node from its parent. Additionally, for each list node,
the wrapper requires a list iteration rule that decomposes
the list into individual tuples. Therefore, STALKER turns
the difficult problem of extracting data from an arbitrary
complex document into a series of easier extraction tasks
from higher level to lower level. Moreover, the extractor

uses multi-pass scans to handle missing attributes and mul-
tiple permutations. The extraction rules are generated by
using of a sequential covering algorithm, which starts from
linear landmark automata to cover as many positive exam-
ples as possible, and then tries to generate new automata
for the remaining examples. A Stalker EC tree that describes
the data structure of the running example is shown in Fig-
ure 12(a), where some of the extraction rules are shown in
Figure 12(b). For example, the reviewer ratings can be ex-
tracted by first applying the List(Reviewer) extraction rule
(which begins with “” and ends with “”) to the
whole document, and then the Rating extraction rule to
each individual reviewer, which is obtained by applying the
iteration rule for List(Reviewer). In a way, STALKER is
equivalent to multi-pass Softmealy [30]. However, the ex-
traction patterns for each attribute can be sequential as op-
posed to the continuous patterns used by Softmealy.

DEByE (Data Extraction By Example): Like NoDoSE, DE-
ByE provides an interactive GUI for wrapper generation
[24], [25]. The difference is that in DEByE the user marks
only atomic (attribute) values to assemble nested tables,
while in NoDoSE the user decomposes the whole document
in a top-down fashion. In addition, DEByE adopts a bot-
tom-up extraction strategy which is different from other
approaches. The main feature of this strategy is that it ex-
tracts atomic components first and then assembles them
into (nested) objects. The extraction rules, called attribute-
value pair patterns (AVPs), for atomic components are iden-
tified by context analysis: starting with context length 1, if
the number of matches exceeds the estimated number of
occurrences provided by the user, it adds additional terms
to the pattern until the number of matches is less than the
estimated one. For example, DEByE generates AVP pat-
terns, “Name* Reviews”, “Name* Rat-
ing”, “Rating*Text” and “*” for book
name, reviewer name, rating and comment respectively (*
denotes the data to be extracted). The resulting AVPs are
then used to compose an object extraction pattern (OEPs).
OEPs are trees containing information on the structure of
the document. The sub-trees of an OEP are themselves
OEPs, modeling the structure of component objects. At the
bottom of the hierarchy lie the AVPs that used to identify
atomic components. The assemble of atomic values into
lists or tuples is based on the assumption that various oc-
currences of objects do not overlap each other. For non-
homogeneous objects, the user can specify more than one
example object, thus creating a distinct OEP for each exam-
ple.

s< N , R>L
 ::= HTML() C1Alph(Rating) HTML()

s< N , R>R ::= Spc(-) Num(-)

s<R, R >L ::= Num(-)

s<R, R >R ::= NL(-) HTML()

b eN N R R T

s<b,N>/
“N=”+
next_tokn

s<N , R>/
“R =”+
next_tokn

s<R, T >/
“T=”+
next_tokn

?/next_token ?/next_token ?/next_token?/ε ?/ε ?/ε

s<N, N>
/ ε

s<T, e>
/ ε

s<R, e> / ε

s< R , R>
/ ε

Fig. 11. A FST for the Web pages in the running example.

Whole document Extraction rule for List(Reviewer):
 SkipTo() SkipTo()

Iteration rule for List(Reviewer):
 SkipTo() SkipTo()

Extraction rule for Rating:
 SkipTo(Rating) SkipTo()

List(Reviewer)Name

Rate TextName

(a) (b)

Fig. 12. An EC tree (a), and a Stalker extraction rule (b).

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 9

4.3 Semi-Supervised IE systems
The systems that we categorize as semi-supervised IE sys-
tems include IEPAD, OLERA and Thresher. As opposed to
supervised approach, OLERA and Thresher accept a rough
(instead of a complete and exact) example from users for
extraction rule generation, therefore they are called semi-
supervised. IEPAD, although requires no labeled training
pages, post-effort from the user is required to choose the
target pattern and indicate the data to be extracted. All
these systems are targeted for record-level extraction tasks.
Since no extraction targets are specified for such systems, a
GUI is required for users to specify the extraction targets
after the learning phase. Thus, users’ supervision is in-
volved.

IEPAD is one of the first IE systems that generalize extrac-
tion patterns from unlabeled Web pages [31]. This method
exploits the fact that if a Web page contains multiple (ho-
mogeneous) data records to be extracted, they are often
rendered regularly using the same template for good visu-
alization. Thus, repetitive patterns can be discovered if the
page is well encoded. Therefore, learning wrappers can be
solved by discovering repetitive patterns. IEPAD uses a
data structure called PAT trees which is a binary suffix tree
to discover repetitive patterns in a Web page. Since such a
data structure only records the exact match for suffixes,
IEPAD further applies center star algorithm to align multi-
ple strings which start from each occurrence of a repeat and
end before the start of next occurrence. Finally, a signature
representation is used to denote the template to compre-
hend all data records. For our running example, only page
pe2 can be used as input to IEPAD. By encoding each tag as
an individual token and any text between two adjacent tags
as a special token “T”, IEPAD discover the pattern
“TTTT TT” with two
occurrences. The user then has to specify, for example, the
2nd, 4th and 6th “T” tokens, as the relevant data (denoting
reviewer name, rating and comment, respectively).

OLERA is a semi-supervised IE system that acquires a
rough example from the user for extraction rule generation
[32]. OLERA can learn extraction rules for pages containing
single data records, a situation where IEPAD fails. OLERA
consists of 3 main operations. (1) Enclosing an information
block of interest: where the user marks an information block
containing a record to be extracted for OLERA to discover
other similar blocks (using approximate matching tech-
nique) and generalize them to an extraction pattern (using
multiple string alignment technique). (2) Drilling-down/rolling-
up an information slot: drilling-down allows the user to
navigate from a text fragment to more detailed compo-
nents, whereas rolling-up combines several slots to form a
meaningful information unit. (3) Designating relevant infor-
mation slots for schema specification as in IEPAD.

Thresher [33] is also a semi-supervised approach that is
similar to OLERA. The GUI for Thresher is built in the Hay-

stack browser which allows users to specify examples of
semantic contents by highlighting them and describing
their meaning (labeling them). However, it uses tree edit
distance (instead of string edit distance as in OLERA) be-
tween the DOM subtrees of these examples to create a
wrapper. Then it allows the user to bind the semantic web
language RDF (Resource Description Framework) classes
and predicates to the nodes of these wrappers.

4.4 Un-Supervised IE systems
As shown at the left-top of Figure 5, unsupervised IE sys-
tems do not use any labeled training examples and have no
user interactions to generate a wrapper. Unsupervised IE
systems, RoadRunner and EXALG, are designed to solve
page-level extraction task, while DeLa and DEPTA are de-
signed for record-level extraction task. In contrast to super-
vised IE systems where the extraction targets are specified
by the users, the extraction target is defined as the data that
is used to generate the page or non-tag texts in data-rich
regions of the input page. In some cases, several schemas
may comply with the training pages due to the presence of
nullable data attributes, leading to ambiguity [34]. The
choice of determining the right schema is left to users. Simi-
larly, if not all data is needed, post-processing may be re-
quired for the user to select relevant data and give each
piece of data a proper name.

DeLa: As an extension of IEPAD, DeLa [35], [36] removes
the interaction of users in extraction rule generalization and
deals with nested object extraction. The wrapper generation
process in DeLa works on two consecutive steps. First, a
Data-rich Section Extraction algorithm (DSE) is designed to
extract data-rich sections from the Web pages by comparing
the DOM trees for two Web pages (from the same Web site),
and discarding nodes with identical sub-trees. Second, a
pattern extractor is used to discover continuously repeated
(C-repeated) patterns using suffix trees. By retaining the
last occurrence for each discovered pattern, it discover new
repeated patterns from the new sequence iteratively, form-
ing nested structure. For example, given the string se-
quence “<P><A>T<A>T
T</P><P><A>TT</P>”, DeLa will discover
“<P><A>TT<P>” from the immediate sequence
“<P><A>TT</P><P><A>TT</P>” and return
parenthesized pattern “(<P>(<A>T)*T<P>)*” to de-
note the nested structure. Since a discovered pattern may
cross the boundary of a data object, DeLa tries K pages and
selects the one with the largest page support. Again, each
occurrence of the regular expression represents one data
object. The data objects are then transformed to a relational
table where multiple values of one attribute are distributed
into multiple rows of the table. Finally, labels are assigned
to the columns of the data table by four heuristics, includ-
ing element labels in the search form or tables of the page
and maximal-prefix and maximal-suffix shared by all cells
of the column.

www.manaraa.com

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

RoadRunner considers the site generation process as en-
coding of the original database content into strings of
HTML code [22]. As a consequence, data extraction is con-
sidered as a decoding process. Therefore, generating a
wrapper for a set of HTML pages corresponds to inferring a
grammar for the HTML code. The system uses the ACME
matching technique to compare HTML pages of the same
class and generate a wrapper based on their similarities and
differences. It starts from comparing two pages, using the
ACME technique to align the matched tokens and collapse
for mismatched tokens. There are two kinds of mismatches:
string mismatches that are used to discover attributes
(#PCDATA) and tag mismatches that are used to discover
iterators (+) and optional (?). Figure 13 shows both an ex-
ample of matching for the first two pages of the running
example and its generated wrapper. Since there can be sev-
eral alignments, RoadRunner adopts UFRE (union-free
regular expression) to reduce the complexity. The alignment
result of the first two pages is then compared to the third
page in the page class. In addition to the module for tem-
plate deduction, RoadRunner also includes two modules,
Classifier and Labeler to facilitate wrapper construction.
The first module, Classifier, analyzes pages and collects
them into clusters with a homogeneous structure, i.e. pages
with the same template are clustered together. The second
module, Labeler, discovers attribute names for each page
class.

EXALG: Arasu and Molina presented an effective formula-
tion for the problem of data extraction from Web pages [37].
The input of EXALG is a set of pages created from the un-
known template T and the values to be extracted. EXALG
deduces the template T and uses it to extract the set of val-
ues from the encoded pages as an output. EXALG detects

the unknown template by using the two techniques differen-
tiating roles and equivalence classes (EC). In the former tech-
nique, the occurrences with two different paths of a particu-
lar token have different roles. For example, in the running
example, the role of “Name” when it occurs in “Book
Name” (i.e., Name5) is different from its role when it occurs
in “Reviewer Name” (i.e., Name14). In the later technique,
an equivalence class is a maximal set of tokens having the
same occurrence frequencies over the training pages (occur-
rence-vector). For example, in Figure 4, the two tokens
<html>1 and <body>2 have the same occurrence-vector (<1,
1, 1, 1>), so they belong to the same equivalence class. The
insight is that template tokens that encompass a data tuple
have the same occurrence vector and form an equivalence
class. However, to avoid data tokens to accidentally form
an equivalence class, ECs with insufficient support (the
number of pages containing the tokens) and size (the num-
ber of tokens in an EC) are filtered. In addition, to conform
to the hierarchical structure of the data schema, equivalence
classes must be mutually nested and the tokens in an EC
must be ordered. Those valid ECs are then used to con-
struct the original template.

DEPTA (Data Extraction based on Partial Tree Alignment):
Like IEPAD and DeLa, DEPTA can be only applicable to
Web pages that contain two or more data records in a data
region. However, instead of discovering repeat substring
based on suffix trees, which compares all suffixes of the
HTML tag strings (as the encoded token string described in
IEPAD), it compares only adjacent substrings with starting
tags having the same parent in the HTML tag tree (similar
to HTML DOM tree but only tags are considered). The in-
sight is that data records of the same data region are re-
flected in the tag tree of a Web page under the same parent
node. Thus, irrelevant substrings do not need to be com-
pared together as that in suffix-based approaches. Further-
more, the substring comparison can be computed by string
edit distance instead of exact string match when using suf-
fix trees where only completely similar substrings are iden-
tified. The described algorithm, called MDR [38], works in
three steps. First, it builds an HTML tag tree for the Web
page as shown in Figure 14 where text strings are disre-
garded. Second, it compares substrings for all children un-
der the same parent. For example, we need to make two
string comparison, (b1, b2) and (b2, ol), under parent node
<body>, where the tag string node is represented by

Wrapper (initially, pe1)

01: <html><body>
02:
03: Book Name
04:
05: Databases
06:
07: Reviews
08:
09:
10:
11: Reviewer Name
12: John
13: Rating
14: 7
15: Text
16: …
17:
18:
19:</body></html>

Sample page (pe2)

01: <html><body>
02:
03: Book Name
04:
05: Data mining
06:
07: Reviews
08:
09:
10:
11: Reviewer Name
12: Jeff
13: Rating
14: 2
15: Text
16: …
17:
18:
19: Reviewer Name
20: Jane
21: Rating
22: 6
23: Text
24: …
25:
26:
27:</body></html>

Parsing

String mismatch

String mismatch

String mismatch

String mismatch

<html><body> Book Name
#PCDATA Reviews

 (Reviewer Name #PCDATA
 Rating #PCDATA
 Text #PCDATA)+
</body></html>

Wrapper after solving mismatch

Terminal search match
Tag mismatch

Fig. 13. Matching the first two pages of the running example (taken
from [22]).

Fig. 14. The tag tree (left) and the DOM tree (as a comparison) for
page pe2 in Figure 4.

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 11

“”. If the similarity is
greater than a predefined threshold (as shown in the
shaded nodes in Figure 14), the nodes are recorded as data
regions. The third step is designed to handle situations
when a data record is not rendered contiguously as as-
sumed in previous works. Finally, the recognition of data
items or attributes in a record is accomplished by partial
tree alignment [39]. Tree alignment is better than string
alignment for it considers tree structure, thus, reducing the
number of possible alignments. The algorithm first chooses
the record tree with the largest number of data items as
center and then matches other record trees to the center
tree. However, DEPTA only adds tag nodes to the center
tree when the positions of the tag nodes can be uniquely
determined in the center tree. For remained nodes, they are
processed in the next iteration after all tag trees are proc-
essed. Note that DEPTA assumes that non-tag tokens are
data items to be extracted, thus, it extracts not only the re-
viewer name, rating and comments, but also the labels
“Reviewer Name”, “Rating”, and “Text” for page pe2 in our
running example. Further, DEPTA is limited to handle
nested data records. So, a new algorithm, NET, is devel-
oped to handle such data records by performing a post-
order traversal of the visual-based tag tree of a Web page
and matching subtrees in the process using a tree edit dis-
tance method and visual cues [40].

Of the unsupervised WI approaches, one important issue

is to differentiate the role of each token: either a data token
or template token. Some assume that every HTML tag is
generated by the template and other tokens are data items
to simplify the issue (as in DeLa and DEPTA). However, the
assumption does not hold for many collections of pages
(therefore, IEPAD and OLERA simply leave the issue to
distinguish between data and template tokens to the users).
RoadRunner also assumes that every HTML tag is gener-
ated by the template, but other matched string tokens are
also considered as part of the template. In comparison,
EXALG has the most detailed tokenization method while
more flexible assumption where each token can be a tem-
plate token if there are enough tokens to form frequently
occurring equivalence class.

On the other hand, DEPTA conducts the mining process
from single Web pages, while RoadRunner and EXALG do
the analysis from multiple Web pages (While DeLa takes
advantages of multiple input pages for data-rich section
extraction and generalized pattern construction, it discovers
C-repeat patterns from single Web pages.). The later, in our
viewpoint, is the key point that is used to differentiate the
role of each token. Thus, multiple pages of the same class is
also used to discover data rich section (as in DeLa) or
eliminate noisy information (as in [41]). Meanwhile, the
adaptation of tree matching in DEPTA (as well as Thresher)
also provides better result than string matching techniques
used in IEPAD and RoadRunner. EXALG similarly does not
make full use of the tree structure although the DOM tree
path information is used for differentiating token roles. Fi-
nally, since information extraction is only a part of a wrap-

per program or information integration systems, additional
tasks like page fetching, label assignment, and mapping
with other web data sources are remained to be processed.

Due to space limitation, we are not able to compare all
researches here. For example, ViNTs [42] is a record-level
wrapper generation system which exploits visual informa-
tion to find separators between data regions from search
result pages. However, the algorithm can be only applicable
to pages that contain at least four data records. Another
related approach that has been applied on Web sites for
extracting information from tables is [43]. The technique
relies on the use of additional links to a detail page contain-
ing additional information about that item. In parallel to the
efforts to detect Web tables, other researchers have worked
in detecting tables in plain text documents (such as gov-
ernment statistical reports) and segmenting them into re-
cords [44]. Since these approaches do not address the prob-
lem of distinguish data tokens from template tokens, we
consider them as semi-supervised approaches.

5 A COMPARATIVE ANALYSIS OF IE TOOLS
Although many researchers have developed various tools
for data extraction from Web pages, there has been only a
limited amount of effort to compare such tools. Unfortu-
nately, in only a few cases can results generated by distinct
tools be directly comparable. From our viewpoint, even in
these few cases, the main goal of the comparison is for a
survey. Therefore, in this section, we use the criteria of the 3
dimensions suggested in section 3 to compare the surveyed
IE tools.

5.1 Task Domain-based comparison
In this section, we contrast among the capabilities of the
surveyed IE systems to support various IE tasks as shown
in Table 1. The features in this dimension include input
variation, such as page type, Non-HTML support, and out-
put variation such as extraction level, attribute variation
and template variation.

Page Type: We first compare the input documents that each
IE system targets. As discussed above, Web pages may be
structured, semi-structured or free-text Web pages according
to the level of structurization. For example, manual or su-
pervised IE systems are designed to extract information
from cross-website pages (e.g. professor data from various
universities), while semi-supervised and supervised IE sys-
tems are designed primarily for extracting data from the
deep Web (template pages). Thus, the latter systems depend
heavily on the common template that is used to generate
Web pages, while the former have included more features
of the tokens (e.g. the number of characters, the fraction of
upper-case letters, etc.) for inducing extraction rules. By
incorporating more characteristics of the template pages,
unsupervised IE systems present high-degree automation
for extraction rule generalization; in contrast, the extension
to non-template pages is rather limited.

www.manaraa.com

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

Non-HTML Support (NHS): The support for non-HTML
inputs depends on the features or background knowledge
used by the IE systems. Thus, when an IE system fails to
generalize extraction rules for an IE task, we (the program-
mers) know how to or what to adjust the system for such a
task. Most supervised systems can support non-HTML
documents by modifying the generalization hierarchy (e.g.
Softmealy) or adding new token features (e.g. SRV). Manual
systems such as Minerva and TSIMMIS, where extraction
rules are written by hand, can be adapted by the wrapper
developer to handle non-HTML documents. Some wrap-
pers, e.g. WebOQL, W4F, XWrap, and DEPTA, rely heavily
on the use of DOM trees information in their systems, so
they cannot support non-HTML documents, while se-
quence based approaches, such as IEPAD, OLERA, Road-
Runner, and DeLa can be adapted to handle non-HTML
documents by adding proper encoding schemes. The
equivalence class technology of EXALG also supports non-
HTML documents, but the success depends on token role
differentiation.

Extraction Level: IE tasks can be classified into four catego-
ries: field-level, record-level, page-level and site-level. Ra-
pier and SRV are designed to extract single-slot records, or
equivalently field-level extractions. Wrappers in EXALG
and RoadRunner extract the embedded data objects in
whole pages which may contain records of multiple kindes,
so wrappers in these systems are page-level. The other re-
maining systems in Table 1 are examples of record-level IE
tasks, although some can be extended for page-level extrac-
tion, e.g. NoDoSE, STALKER, etc. Most record-level IE sys-
tems discover record boundaries and then divide them into
separate items, while the bottom-up extraction strategy in
DEByE extracts a set of attributes and then assembles them
to form a record. So far, there are no site-level IE systems.

Extraction Target Variation: Many Web pages are hierarchi-
cally organized with multiple nesting levels. Typically, this
complex structure is loose, presenting variations on semi-
structured data. The complex degree of an extraction target
(data object) depends on the appearance of missing attrib-
utes (MA), multiple-valued attributes (MVA), multi-

TABLE 1
ANALYSIS BASED ON THE TASK DOMAINS

Extraction Targets Variation Template Variation
Tools Page

Type NHS Extraction
Level MA/MVA MOA Nested VF CT

UTA

Minerva Semi-S Yes Record Level Yes Yes Yes Both By Order Yes

TSIMMIS Semi-S Yes Record Level Yes No Yes Disj By Order No

WebOQL Semi-S No Record Level Yes Yes Yes Disj By Order No

W4F Temp No Record Level Yes Yes Yes SP By Order Yes

M
an

ua
l

XWRAP Temp No Record Level Yes No Yes SP By Order Yes

RAPIER Free Yes Field Level Yes -- -- Disj More
constraints Yes

SRV Free Yes Field Level Yes -- -- Disj More
constraint Yes

WHISK Free Yes Record Level Yes Yes No Disj By Order Yes

NoDoSE Semi-S Yes Page/Record Yes Limited Yes No By Order No

DEByE Semi-S Yes Record Level Yes Yes Yes Disj More
constraint No

WIEN Semi-S Yes Record Level No No Limited No By Order No

STALKER Semi-S Yes Record Level Yes Yes Yes Both More
constraint No

Su
pe

rv
is

ed

SoftMealy Semi-S Yes Record Level Yes Limited Multi
Pass Disj By Order/

SinglePass Yes

IEPAD Temp Limited Record Level Yes Limited Limited Both By Order Yes

Se
m

i-S
up

er
vi

se
d

OLERA Temp Limited Record Level Yes Limited Limited Both By Order Yes

DeLa Temp Limited Record Level Yes Limited Yes Both By Order No

RoadRunner Temp Limited Page Level Yes No Yes No By Order No

EXALG Temp Limited Page Level Yes No Yes Both By Order No

U
n-

Su
pe

rv
is

ed

DEPTA Temp No Record Level Yes No Limited Disj By Order No

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 13

ordering attributes (MOA), and nested data objects. To
handle these variations, the extracting procedure needs
special care in addition to its usual logic where attributes
appear exactly once without ordering and nesting issues.
Understanding how various IE systems support these
variations can help us decide how to tailor an IE system to
new tasks. Note that for field-level extraction systems (SRV
and Rapier), handling of these variations does not present
specific difficulties, since they do not deal with the relation-
ships of attributes in the data objects.

Most IE systems support missing attributes and multi-
ple-valued attributes extraction, except for WIEN and
WHISK. The special care for programming-based IE sys-
tems is usually an exception handler, e.g. Minerva, W4F
and WebOQL. In TSIMMIS, two operators “case” and
“split” are designed to handle missing attributes and mul-
tiple-valued attributes. Many IE systems do not support
multiple-ordering attributes since their extraction rules de-
pend on the location of the fields within a record. Hsu was
a pioneer who attempted to overcome the problem of mul-
tiple ordering attributes. However, from our viewpoint, the
situations he handled were instances of missing attributes.
So, we consider that SoftMealy is limited to handle MOA
using single-pass finite state transducer (FST). The use of
FST in SoftMealy, also make it possible to handle MA and
MVA. In overall, SoftMealy can handle objects of nested
structures through multi-pass FST. Stalker can handle MOA
and nested object extraction by multi-pass scans over the
input data. Other IE systems (IEPAD, OLERA and DeLa),
make use of alignment technique to form disjunctive rules
to handle MA, MVA, MOA. In addition, the use of multiple
encoding schemes in IEPAD and OLERA give them the op-
portunity to handle more complex nested data objects. The
two heuristic-based mining components in NoDoSE and
the bottom-up strategy (where the set of attributes are rec-
ognized, extracted and stored in a set variable prior to the
object itself) in DEByE give these systems the ability to
handle MOA and nested data objects in overall. RoadRun-
ner and EXALG did not support MOA because their extrac-
tion rules depend on the location of the attributes within a
record, although in overall, they can handle nested data
objects. DEPTA, theoretically can support nested data ob-
jects by exploiting the tag tree structure. MOA is not possi-
ble in DEPTA since the partial tree match is based on
unique order of the tag children with the same parent.

Template Variation: The difficulties in extraction rule in-
duction come from the variant formats of the data in-
stances. As described in Section 3.1, an attribute may have
variant formats (VF), which usually require disjunctive rule
supports or sequential rule supports. Some IE systems sup-
port both disjunctive rules and sequential patterns (SP) for
rule generalization. To the best of our knowledge, WIEN,
W4F, XWrap, NoDoSE, and RoadRunner do not support
disjunctive rules. However, W4F and XWrap support se-
quential pattern for rule generalization. A regular expres-
sions containing don’t care symbols is an example of se-
quential pattern. Sequential patterns can be generalized by

alignment technique or by sequential pattern mining (e.g.
Stalker). Meanwhile, different attributes may have the same
display format called common format (CT). Most IE sys-
tems take the advantage of attribute order to extract them.
Others, e.g. DeBYE and Stalker, add more constraints to
form a longer extraction rule. What follows is that the ex-
traction precision can be greatly decreased in case of miss-
ing attributes or multiple-order attributes.

UnTokenized Attributes (UTA): So far, we’ve seen three
approaches to handle untokenized attributes. The first one
is through post-processing. For example, the split operator
in W4F offers regular expressions and constraints to ad-
dress finer pieces of data. The second one is by contextual
rules instead of delimiter-based rules. As proposed by
Softmealy, the idea of separators as well as contextual rules
helps user address data of any granularity. Finally, multi-
ple-level encodings also allow IE systems to address data of
different granularity without sacrificing the advantage of
abstraction for rule generalization as in IEPAD and OLERA.

5.2 Technique-based comparison
In this section, we use the criteria suggested in Section 3.2
to compare and evaluate IE systems from the perspective of
the underlying techniques used. The results are shown in
Table 2 and discussed below.

Scan Pass: This comparison refers to the number of scan
passes required over an input document for information
extraction. Most WI systems design the extractor to scan the
input document once, referred to as single-pass extractor,
while others (e.g. STALKER and multi-pass SoftMealy) scan
the input document several times to complete the extrac-
tion. The extractor of DEByE also needs multiple passes to
extract each atomic attributes. Generally speaking, single-
pass wrappers are more efficient than multi-pass wrappers.
However, multi-pass wrappers are more effective at han-
dling data objects with unrestricted attribute permutations
or complex object extraction. SRV and Rapier can only gen-
erate single slot rules, so the extractor needs to make multi-
ple passes over the input page to extract relevant data.

Extraction Rule Type: Most WI systems use extraction rules
that are represented as regular grammars to identify the
beginning and end of the relevant data, whereas Rapier and
SRV use extraction rules expressed using first order logic.
Regular expression rules are powerful for semi-structured
inputs, especially template-based pages, since we usually
find common tokens surrounding the data to be extracted.
Even when no common tokens exist, we can induce rules
by incorporating a generalization hierarchy of tokens as
background knowledge (e.g. Softmealy). However, for free-
text inputs, where very few common tokens can be found,
we need to incorporate more features, e.g. digit density,
length, POS tags, etc. to generalize the common characteris-
tics among various tokens. That’s why first-order logic
rules are used for free-text IE tasks (e.g. SRV and Rapier).

www.manaraa.com

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

Features Used: Earlier IE systems are designed to handle
non-template based Web pages, say computer science de-
partment Web pages from various universities. Therefore,
they have used both HTML tags and literal words as delim-
iter-based constraints. For template-based Web pages, it is
possible to use DOM tree paths to denote a specific piece of
information in a Web page. For example, W4F, XWrap and
other commercial products use DOM tree paths to address
a Web page. Since the data to be extracted are often co-
located in the same path of the DOM tree, this makes the
rule learning process much easier. For free text information
extraction, natural language processing techniques such as
part-of-speech tagger and Word-Net semantic classes are
used as additional features. SRV also uses orthographic
features, token’s length, and link grammars. Finally, EX-
ALG exploits statistical information of the tokens in Web
pages to generate their wrappers.

Learning Algorithm: Wrappers in programming-based WI
systems are written by hand and take as input a specifica-
tion that is declaratively stated where the data of interest is
located in the HTML pages and how the data is packaged
into objects. Thus, no learning algorithms are used in these
systems. Rapier is a bottom-up relational learning system
inspired by ILP methods, while SRV is a top-down rela-
tional algorithm. Whisk is a top-down covering learning
system. Its patterns have two components that specify the

context and the exact delimiters of the phrase to be extracted.
DEByE and NoDoSE all require a large amount of support
from users to model the data in the documents. They focus
on the interface design and apply very simple methods to
learn extraction patterns, i.e. common prefix and suffix of
the data values to be extracted. On the other hand, Stalker
and SoftMealy use Ad-hoc generalization methods for
learning extraction rules. They focus on the learning tech-
niques and the extractor architecture and use a hierarchy of
token classes for token generalization, which is quite differ-
ent from NoDoSE and DEByE where the extraction rules
are simply based on superficial or literal words.

Semi-supervised or unsupervised IE systems mainly ap-
ply data mining techniques for various pattern discoveries.
IEPAD discovers regular and adjacent maximum patterns
using PAT trees and string alignment techniques, while
DeLa further discovers nested structures from continuous
repeated (C-repeated) patterns. OLERA applies approxi-
mate string matching and string alignment techniques fol-
lowing the users’ enclosing, drill-down/roll-up operations.
RoadRunner analyzes input pages by string comparison
using the ACME technique. EXALG exploits statistical in-
formation to generate the template and schema of Web
pages by using equivalence classes and differentiating roles
techniques. DEPTA applies a mining technique and partial
tree alignment to mine data records in a Web page. In com-
parison, IEPAD and DEPTA discover repeated patterns

TABLE 2
ANALYSIS BASED ON THE TECHNIQUES USED

Tools Scan Pass Extraction
Rule Type Features Used Learning Algorithm Tokenization

Schemes

Minerva Single Regular exp. HTML tags/Literal words None Manually

TSIMMIS Single Regular exp. HTML tags/Literal words None Manually

WebOQL Single Regular exp. Hypertree None Manually

W4F Single Regular exp. DOM tree path addressing None Tag Level

XWRAP Single Context-Free DOM tree None Tag Level

RAPIER Multiple Logic rules Syntactic/Semantic ILP (bottom-up) Word Level

SRV Multiple Logic rules Syntactic/Semantic ILP (top-down) Word Level

WHISK Single Regular exp. Syntactic/Semantic Set covering (top-down) Word Level

NoDoSE Single Regular exp. HTML tags/Literal words Data Modeling Word Level

DEByE Multiple Regular exp. HTML tags/Literal words Data Modeling Word Level

WIEN Single Regular exp. HTML tags/Literal words Ad-hoc (bottom-up) Word Level

STALKER Multiple Regular exp. HTML tags/Literal words Ad-hoc (bottom-up) Word Level

SoftMealy Both Regular exp. HTML tags/Literal words Ad-hoc (bottom-up) Word Level

IEPAD Single Regular exp. HTML tags Pattern Mining, String Alignment Multi-Level

OLERA Single Regular exp. HTML tags String Alignment Multi-Level

DeLa Single Regular exp. HTML tags Pattern Mining Tag Level

RoadRunner Single Regular exp. HTML tags String Alignment Tag Level

EXALG Single Regular exp. HTML tags/Literal words Equivalent Class and Role
Differentiation by DOM tree path Word Level

DEPTA Single Tag Tree HTML tags treeHTML tags Pattern Mining, String comparison,
Partial tree alignment Tag Level

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 15

from one HTML page, while Roadrunner and EXALG dis-
cover repeat patterns from multiple HTML pages.

Tokenization Schemes: Wrappers in Minerva and TSIM-
MIS are written by hand, so they do not need to tokenize
the input pages. Most WI systems for Web pages support
tag-level tokernization. Some systems even support word-
level tokernization, e.g. supervised WI systems and EX-
ALG. WebOQL, W4F, XWrap, RoadRunner and DeLa use a
tag-level encoding scheme to translate the input training
pages into tokens. Also, the input HTML page in W4F and
XWrap has been parsed to construct a parse tree that re-
flects its HTML tags hierarchy following the document ob-
ject model (DOM). Finally, IEPAD and OLERA allow multi-
ple levels of encodings for input training pages.

5.3 Automation degree-based comparison
In this section, we use the features suggested in Section 3.3
to compare and evaluate IE systems from the automation
degree prospective. The results are shown in Table 3 and
discussed below.

User Expertise: Manual IE systems require users of pro-
gramming background to write correct extraction rules.
Supervised and semi-supervised WI systems require users
to label exact or part of the data to be extracted, thus there
is no special expertise needed. For unsupervised systems,
they require no assistant from users (except for pattern se-

lection). For IEPAD and OLERA, although they require no
labeling before pattern discovery, post-labeling is needed to
sift desired data, while the work of distinguishing template
tokens from data tokens is accomplished by unsupervised
IE systems. Strictly speaking, the label of the data extracted
by unsupervised IE systems remains to be assigned, and
only DeLa has dealt with this problem.

Fetching Support: Most IE systems focus on extraction rule
generalization and use a set of pages that are manually
downloaded as training examples. Some systems specifi-
cally support page fetching in wrapper construction. For
example, W4F has a component called RetrieveAgent that is
used to retrieve a Web source by inputting its URL. Also,
the syntactical normalizer component of XWrap accepts an
URL entered by the user, issues an HTTP request to the re-
mote server identified by the URL and fetches the corre-
sponding Web page. Other systems also propose new tools
for page fetching support. For instance, WNDL is a lan-
guage proposed by Hsu et al. to describe Web navigation
for page fetching support with Softmealy and IEPAD [45].
ASByE, a member of DEByE family, is a tool for collecting
static and dynamic Web pages. DeLa uses the existing Hid-
den Web crawler, HiWe, to automatically collect the labels
of the elements from Web sites and send queries to the Web
site.

Output/API Support: Outputting the extracted relevant

TABLE 3
ANALYSIS BASED ON AUTOMATION DEGREE

Tools User Expertise Fetch support Output/API
Support Applicability Limitation

Minerva Programming No XML High Not restricted

TSIMMIS Programming No Text High Not restricted

WebOQL Programming No Text High Not restricted

W4F Programming Yes XML Medium Not restricted

XWRAP Programming Yes XML Medium Not restricted

RAPIER Labeling No Text Medium Not restricted

SRV Labeling No Text Medium Not restricted

WHISK Labeling No Text Medium Not restricted

NoDoSE Labeling No XML, OEM Medium Not restricted

DEByE Labeling Yes XML, SQL DB Medium Not restricted

WIEN Labeling No Text Medium Not restricted

STALKER Labeling No Text Medium Not restricted

SoftMealy Labeling Yes XML, SQL DB Medium Not restricted

IEPAD Post labeling
Pattern selection No Text Low Multiple-records page

OLERA Partial Labeling No XML Low Not restricted

DeLa Pattern selection Yes Text Low Multiple-records page,
More than one page

RoadRunner Pattern selection Yes XML Low More than one page

EXALG Pattern selection No Text Low More than one page

DEPTA Pattern selection No SQL DB Low Multiple-records pages

www.manaraa.com

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

data is comparably simple, so most IE systems support it.
The systems Minerva, W4F, XWrap, NoDoSE, DEByE,
SoftMealy, OLERA and RoadRunner output the extracted
data in a XML format. Also, NoDoSE supports other for-
mats, such as OEM, and DEByE supports SQL database
output format. On the other hand, API support is important
since it is the connection between the generated wrapper
and information integration systems. Programming-based
IE systems have API supports, while others do not specifi-
cally mention this in their papers.

Applicability: As described in section 3.3, applicability
concerns how easy these approaches can be extended to
other task domains. A key factor for high applicability is
that domain-specific information is separate from the un-
derlying learning mechanism. For the various IE tasks we
discussed above, manual systems and supervised systems
have good modularity while semi-supervised or unsuper-
vised systems have less applicability since they have
pushed the domain specific information to the limit for
high automation degree.

Limitation: Finally, we consider the requirements for mul-
tiple data-records or multiple training pages input. Al-
though, we can regard such requirements as different input
IE task, we view them as a limitation of these approaches
for various WI systems to be compared in the same task
domain. Take template-page IE for example, an IE system
that needs multiple-records training Web pages can not be
applied to a site that includes Web pages of a single record.
As summarized in Table 3, there is no restriction about the
content and the number of training pages for manual and
supervised IE systems. IEPAD, DeLa and DEPTA require
input pages with multiple-records to generate a wrapper.
DeLa, RoadRunner, EXALG require more than one training
page as input for their approaches to work.

5.4 Overall comparison
Although we have compared various IE systems from three
dimensions, there are correlations among these criteria. For
example, template-based pages have higher automation
degree than non-template pages and free-text documents
since the inputs present structured framework that can be
discovered by unsupervised approaches. However, this
does not imply that data extraction from template-based
pages is easier than other pages. Instead, new problems
arise, e.g. distinction between template and data tokens,
and label assignment to data tokens.

As shown in Figure 15, manual IE systems can be applied
to all kinds of inputs as long as proper features are provided
by the systems, though it depends on the programmers’ tech-
niques to compose the extraction rules. Semi-supervised and
unsupervised IE systems can be applied only to template-
based pages since their success rely on the existence of tem-
plate. In addition, we also see that unsupervised systems usu-
ally apply superficial features such as HTML tags for regular
expression rules since they are targeted for template-based
pages. For IE from cross-site pages and free texts, semantic
features (e.g. orthographic features, token’s length, etc.) are
required since there are less common tags and words among
the input documents.

For a practitioner, one wants to know which techniques are
effective, good recall and precision. Since these systems deal
with different data and have different features, it is not possi-
ble to evaluate them in a consistent way. Thus, we can only
compare them from their applicability. Semi-supervised and
unsupervised IE systems have embedded in their systems
heuristics observed from template pages, e.g. contiguous data
area (IEPAD), non-contiguous data records (DEPTA), nested
data objects (DeLa). Since there are many variations on the
Web, there is no guarantee such techniques work for all Web
pages, though we do find that newly proposed approaches
can solve more pages than past approaches. As for supervised
approaches, since data to be extracted are labeled by users,
their applicability is comparatively better than unsupervised
systems. Still, there is no guarantee for the success of rule in-
duction.

For a researcher, one wants to know which technique to
apply when tailoring current systems to a new IE task domain.
As discussed above, the techniques used in unsupervised IE
systems is hard to extend to free texts and even non-template
pages since many heuristics are applicable only to template-
based pages. For supervised approaches, we have seen well-
known learning techniques (e.g. ILP and set covering in SRV,
WHISK, etc.) as well as Ad-hoc learning (bottom-up generali-
zation in Stalker, Softmealy, etc.). Ad-hoc learning techniques
are faster in learning by incorporating a token hierarchy for
generalization. We appreciate supervised approaches since we
can add new features to existing systems without modifying
the learning algorithms. Although only ILP and set covering
algorithms are used now, it would be interesting to see other
learning algorithms (e.g. support vector machine, etc.) to be
applied.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we survey the major IE tools in the literature
and compare them in three dimensions: the task domain,
the automation degree, and the techniques used. A set of
criteria are proposed for the comparison and evaluation in
each dimension. The criteria of the first dimension explain
why an IE system fails to handle some Web sites of particu-

Task
Domain

 Template Non-template Free-text
 pages pages

Features
Used

Sem
antic Literal

D
om

-tree
Syntactic w

ords H
TM

L tags

Manual /

Supervised
Approaches

Logic Rules
Regular Exp.

Manual /

Supervised
Approaches

Regular Exp.

Manual /
Supervised /
Semi-super /

Unsupervised

Regular Exp.

Fig. 15. Overall comparison.

www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 17

lar structures. The criteria of the second dimension measure
the degree of automation for IE systems. The criteria of the
third dimension measure the performance of IE systems.
We present our taxonomy of WI systems from the users’
viewpoint and compare important features of WI systems
that affect their effectiveness.

There are several points to make from the survey. First, we
see the trend of developing highly automatic IE systems,
which saves not only the effort for programming, but also the
effort for labeling. Thus, although the creation of Web services
provides another way for data exchange and information inte-
gration, it may not be the best choice since the involvement of
programmer is unavoidable. On the other hand, not all IE
tasks can be wrapped by fully automatic IE systems. Unsu-
pervised approaches can only support template pages. The
extension of such systems to non-template page extraction
tasks is very limited. In contrast, supervised approaches, al-
though require annotations from users, extend well to non-
template page extraction if proper features are selected for
extraction rules.

The technique of information extraction can be applied
to non-HTML documents such as medical records and cur-
riculum vitae to facilitate the maintenance of large semi-
structured documents. In the future, information extraction
from cross-website pages will become more important as
we move toward semantic Web. In this survey, we only fo-
cus on data extraction from Web documents. Page fetching
support and extracted data integration (or schema map-
ping) from various data sources are two research topics that
are not thoroughly studied in this paper. A new research
topic on integration of search forms has also drawn many
attentions [46], [47].

REFERENCES
This work was partially sponsored by National Science Council,
Taiwan under grant NSC94-2213-E-008-020 and NSC94-2524-
S-008-002.

REFERENCES
[1] Riloff, E., Automatically constructing a dictionary for information

extraction tasks. Proceedings of the Eleventh National Conference
on Artificial Intelligence (AAAI-93), pp. 811-816, AAAI Press/The
MIT Press, 1993.

[2] Huffman, S., Learning information extraction patterns from ex-
amples. Connectionist, statistical, and symbolic Approaches to
Learning for Natural Language Processing, Springer-Verlag, 1996.

[3] Kim, J. and Moldovan, D., Acquisition of linguistic patterns for
knowledge-based information extraction. IEEE Transactions on
Knowledge and Data Engineering 7(5): 713-724, 1995.

[4] Krupka, G., Description of the SRA system as used for MUC-6.
Proceedings of the sixth Message Understanding Conference
(MUC-6), pp. 221-235, 1995.

[5] Soderland, S., Fisher, D., Aseltine, J., and Lehnert, W., CRYSTAL:
Inducing a conceptual dictionary. Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence (IJCAI),
1995.

[6] Soderland, S., Learning information extraction rules for
semi-structured and free text. Journal of Machine Learning, 34(1-
3): 233-272, 1999.

[7] Califf, M. and Mooney, R., Relational learning of pattern-match
rules for information extraction. Proceedings of AAAI Spring
Symposium on Applying Machine Learning to Discourse Process-
ing Stanford, California, March, 1998.

[8] Freitag, D., Information extraction from HTML: Application of a
general learning approach. Proceedings of the Fifteenth Confer-
ence on Artificial Intelligence (AAAI-98).

[9] Kushmerick, N., Weld, D., and Doorenbos, R., Wrapper induction
for information extraction. Proceedings of the Fifteenth Interna-
tional Conference on Artificial Intelligence (IJCAI), pp. 729-735,
1997.

[10] Hsu, C.-N. and Dung, M., Generating finite-state transducers for
semi-structured data extraction from the web. Journal of Informa-
tion Systems 23(8): 521-538, 1998.

[11] Muslea, I., Minton, S., and Knoblock, C., A hierarchical approach
to wrapper induction. Proceedings of the Third International
Conference on Autonomous Agents (AA-99), 1999.

[12] Chang, C.-H., Hsu, C.-N., and Lui, S.-C. Automatic information
extraction from semi-Structured Web Pages by pattern discovery.
Decision Support Systems Journal, 35(1): 129-147, 2003.

[13] Kushmerick. N., Adaptive Information Extraction: Core technolo-
gies for Information agents. In Intelligent Information Agents
R&D in Europe: An AgentLink perspective (Klusch, Bergamaschi,
Edwards & Petta, eds.). Lecture Notes in Computer Science 2586,
Springer, 2003.

[14] Soderland, S., Learning to extract text-based information from the
world wide web. Proceedings of the third International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pp. 251-
254, 1997.

[15] Ciravegna, F., Learning to tag for information extraction from
text. Proceedings of the ECAI-2000 Workshop on Machine
Learning for Information Extraction, Berlin, August 2000.

[16] Laender, A. H. F., Ribeiro-Neto, B., DA Silva and Teixeira, A brief
survey of Web data extraction tools. SIGMOD Record 31(2): 84-93,
2002.

[17] Crescenzi, V., and Mecca, G., Grammars have exceptions. Infor-
mation Systems, 23(8): 539-565, 1998.

[18] Hammer, J., McHugh, J. and Garcia-Molina, Semistructured data:
the TSIMMIS experience. In Proceedings of the 1st East-European
Symposium on Advances in Databases and Information Systems
(ADBIS), St. Petersburg, Rusia, pp. 1-8, 1997.

[19] Arocena, G. O. and Mendelzon, A. O., WebOQL: Restructuring
documents, databases, and Webs. Proceedings of the 14th IEEE
International Conference on Data Engineering (ICDE), Orlando,
Florida, pp. 24-33, 1998.

[20] Saiiuguet, A. and Azavant, F., Building intelligent Web applica-
tions using lightweight wrappers. Data and Knowledge Engineer-
ing 36(3): 283-316, 2001.

[21] Liu, L., Pu, C., and Han, W. XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources, Proceedings of
the 16th IEEE International Conference on Data Engineering
(ICDE), San Diego, California, pp. 611-621, 2000.

[22] Crescenzi, V., Mecca, G. and Merialdo, P., RoadRunner: towards-
automatic data extraction from large Web sites. Proceedings of the
26th International Conference on Very Large Database Systems
(VLDB), Rome, Italy, pp. 109-118, 2001.

[23] Adelberg, B., NoDoSE: A tool for semi-automatically extracting
structured and semi-structured data from text documents. SIG-
MOD Record 27(2): 283-294, 1998.

[24] Laender, A. H. F., Ribeiro-Neto, B. and DA Silva, A., S., DEByE -

www.manaraa.com

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-0475-1104.R3

Data Extraction by Example. Data and Knowledge Engineering,
40(2): 121-154, 2002.

[25] Ribeiro-Neto, B., A., Laender, A., H., F. and DA Silva, A., S., Ex-
tracting semi-structured data through examples. Proceedings of
the Eighth ACM International Conference on Information and
Knowledge Management (CIKM), Kansas City, Missouri, pp. 94-
101, 1999.

[26] Embley, D. W., Campbell, D. M., Jiang, Y. S., Liddle, S. W., Kai Ng,
Y., Quass, D. and Smith, R. D., Conceptual-model-based data ex-
traction from multiple-record Web pages. Data and Knowledge
Engineering, 31(3): 227-251, 1999.

[27] Sarawagi, S., Automation in information extraction and integra-
tion, Tutorial of The 28th International Conference on Very Large
Data Bases (VLDB), 2002.

[28] Kuhlins, S and Tredwell, R. Toolkits for generating wrappers,
Net.ObjectDays 2002: Objects, Components, Architectures, Ser-
vices and Ap-plications for a Networked World,
http://www.netobjectdays.org/, LNCS 2591, 2002.

[29] Elmasri, R. and Navathe, S. B. Fundamentals of Database Sys-
tems, 4th Ed. Addison Wesley, 2003.

[30] Hsu, C.-N. and Chang, C.-C. Finite-State Transducers for Semi-
Structured Text Mining. In Proceedings of IJCAI-99 Workshop on
Text Mining: Foundations, Techniques and Applications, Stock-
holm, Sweden, 1999. Page 38-49.

[31] Chang, C.-H. and Lui, S.-C., IEPAD: Information extraction based
on pattern discovery. Proceedings of the Tenth International Con-
ference on World Wide Web (WWW), Hong-Kong, pp. 223-231,
2001.

[32] Chang, C.-H. and Kuo, S.-C. OLERA: A semi-supervised ap-
proach for Web data extraction with visual support. IEEE Intelli-
gent Systems, 19(6):56-64, 2004.

[33] Hogue, A. and Karger, D. Thresher: Automating the Unwrapping
of Semantic Content from the World Wide. Proceedings of the
14th International Conference on World Wide Web (WWW), Ja-
pan, pp. 86-95, 2005.

[34] Yang, G., Ramakrishnan, I. V. and Kifer, M. On the complexity of
schema inference from Web pages in the presence of nullable data
attributes, Proceedings of the 12th ACM International Conference
on Information and Knowledge Management (CIKM), pp. 224-
231, 2003.

[35] Wang, J. and Lochovsky, F. H., Wrapper induction based on
nested pattern discovery. Technical Report HKUST-CS-27-02,
Dept. of Computer Science, Hong Kong, U. of Science & Technol-
ogy, 2002.

[36] Wang, J. and Lochovsky, F. H., Data extraction and label assign-
ment for Web databases, Proceedings of the Twelfth International
Conference on World Wide Web (WWW), Budapest, Hungary, pp.
187-196, 2003.

[37] Arasu, A. and Garcia-Molina, H., Extracting structured data from
Web pages. Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, San Diego, California, pp. 337-
348, 2003.

[38] Liu, B., Grossman, R. and Zhai, Y., Mining data records in Web
pages. KDD, 601-606, 2003.

[39] Zhai, Y. and Liu, B. Web Data Extraction Based on Partial Tree
Alignment. Proceedings of the 14th International Conference on
World Wide Web (WWW), Japan, pp. 76-85, 2005.

[40] Liu, B. and Zhai, Y., NET – A System for Extracting Web Data
from Flat and Nested Data Records. WISE 2005, 487-495, 2005.

[41] Lan Yi, Bing Liu, and Xiaoli Li. "Eliminating Noisy Information in

Web Pages for Data Mining." Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data Min-
ing (KDD-2003), Washington, DC, USA, August 24 - 27, 2003.

[42] Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C. Fully
Automatic Wrapper Generation For Search Engines. Proceedings
of the 14th International Conference on World Wide Web (WWW),
Japan, pp. 66-75, 2005.

[43] Lerman, K., Getoor, L., Minton, S. and Knoblock, C. A., Using the
structure of Web sites for automatic segmentation of tables. SIG-
MOD Conference, 119-130, 2004.

[44] Pinto, D., McCallum, A., Wei, X. and Croft, B. C., Table extraction
using conditional random fields. SIGIR, 235-242, 2003.

[45] Hsu, C.-N., Chang, C.-H., Hsieh, C.-H., Lu, J.-J. and Chang, C.-C.
Reconfigurable Web Wrapper Agents for Biological Information
Integration, JASIST (SCI expanded), Special Issue on Bioinformat-
ics, Vol. 56, No. 5, pp. 505--517, 2005.

[46] He, B., Chang, K. C. and Han, J. Discovering complex matchings
across web query interfaces: a correlation mining approach. Pro-
ceedings of the tenth International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 148-157, 2004.

[47] Wu, W., Yu, C., Doan, A. and Meng, W. An interactive clustering-
based approach to integrating source query interfaces on the deep
web. Proceedings of the ACM SIGMOD International Conference
on Management of Data, Paris, France. pp. 95-106, 2004.

Chia-Hui Chang Chia-Hui Chang is an associate
professor at National Central University in Taiwan.
She received her B.S. in Computer Science and
Information Engineering from National Taiwan
University, Taiwan in 1993 and Ph.D. in the same
department in Jan. 1999. Her research interests
include Web information integration, knowledge
discovery from databases, machine learning, and
data mining.

Mohammed Kayed is an assistant lecturer at Beni-
Suef Universiy. He received the BSc degree from
Cairo University, Egypt, in 1994, and the MSc degree
from Minia University, Egypt, in 2002. His research
interests include information retrieval and Web data
extraction. He is also a Ph. D. student at Beni-Suef
University. His thesis research concerns on
developing a system for Web data extraction.

Moheb R. Girgis is a member of the IEEE Com-
puter Society. He received the BSc degree from
Mansoura University, Egypt, in 1974, the MSc de-
gree from Assuit University, Egypt, in 1980, and the
PhD from the University of Liverpool, England, in
1986. He is an associate professor at Minia Univer-
sity, Egypt. His research interests include software
engineering, information retrieval, genetic algo-
rithms, and networks.

Dr. Khaled F. Shaalan is an assistant professor at
the Institute of Informatics, British University in
Dubai (BUiD). Before joining BUiD, Khaled lectured
at the Faculty of Computers & Information, Cairo
University. He is Honorary Fellow, University of
Edinburgh, UK. Both his teaching and research are
related to language engineering and knowledge
engineering.

