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Abstract—The Internet presents a huge amount of useful information which is usually formatted for its users, which makes it difficult 
to extract relevant data from various sources. Therefore, the availability of robust, flexible Information Extraction (IE) systems that 
transform the Web pages into program-friendly structures such as a relational database will become a great necessity. Although 
many approaches for data extraction from Web pages have been developed, there has been limited effort to compare such tools. 
Unfortunately, in only a few cases can the results generated by distinct tools be directly compared since the addressed extraction 
tasks are different. This paper surveys the major Web data extraction approaches and compares them in three dimensions: the task 
domain, the automation degree, and the techniques used. The criteria of the first dimension explain why an IE system fails to handle 
some Web sites of particular structures. The criteria of the second dimension classify IE systems based on the techniques used. The 
criteria of the third dimension measure the degree of automation for IE systems. We believe these criteria provide qualitatively 
measures to evaluate various IE approaches. 

Index Terms—Information Extraction, Web Mining, Wrapper, Wrapper Induction. 

——————————      —————————— 

1 INTRODUCTION

HE explosive growth and popularity of the world-wide 
web has resulted in a huge amount of information 
sources on the Internet. However, due to the heteroge-

neity and the lack of structure of Web information sources, 
access to this huge collection of information has been lim-
ited to browsing and searching. Sophisticated Web mining 
applications, such as comparison shopping robots, require 
expensive maintenance to deal with different data formats. 
To automate the translation of input pages into structured 
data, a lot of efforts have been devoted in the area of infor-
mation extraction (IE). Unlike information retrieval (IR), 
which concerns how to identify relevant documents from a 
document collection, IE produces structured data ready for 
post-processing, which is crucial to many applications of 
Web mining and searching tools. 

Formally, an IE task is defined by its input and its extrac-
tion target. The input can be unstructured documents like 
free text that are written in natural language (e.g. Figure 1) 
or the semi-structured documents that are pervasive on the 
Web, such as tables or itemized and enumerated lists (e.g. 
Figure 2). The extraction target of an IE task can be a rela-
tion of k-tuple (where k is the number of attributes in a re-
cord) or it can be a complex object with hierarchically or-
ganized data. For some IE tasks, an attribute may have zero 
(missing) or multiple instantiations in a record. The diffi-
culty of an IE task can be further complicated when various 
permutations of attributes or typographical errors occur in 

the input documents. 
Programs that perform the task of IE are referred to as 

extractors or wrappers. A wrapper was originally defined 
as a component in an information integration system which 
aims at providing a single uniform query interface to access 
multiple information sources. In an information integration 
system, a wrapper is generally a program that “wraps” an 
information source (e.g. a database server, or a Web server) 
such that the information integration system can access that 
information source without changing its core query answer-
ing mechanism. In the case where the information source is 
a Web server, a wrapper must query the Web server to col-
lect the resulting pages via HTTP protocols, perform infor-
mation extraction to extract the contents in the HTML 
documents, and finally integrate with other data sources. 
Among the three procedures, information extraction has 
received most attentions and some use wrappers to denote 
extractor programs. Therefore, we use the terms extractors 
and wrappers interchangeably.  

Wrapper induction (WI) or information extraction (IE) 
systems are software tools that are designed to generate 
wrappers. A wrapper usually performs a pattern matching 
procedure (e.g., a form of finite-state machines) which relies 
on a set of extraction rules. Tailoring a WI system to a new 
requirement is a task that varies in scale depending on the 
text type, domain, and scenario. To maximize reusability 
and minimize maintenance cost, designing a trainable WI 
system has been an important topic in the research fields of 
message understanding, machine learning, data mining, 
etc. The task of Web IE, that we are concerned in this paper, 
differs largely from traditional IE tasks in that traditional IE 
aims at extracting data from totally unstructured free texts 
that are written in natural language. Web IE, in contrast, 
processes online documents that are semi-structured and 
usually generated automatically by a server-side applica-
tion program. As a result, traditional IE usually takes ad-
vantage of NLP techniques such as lexicons and grammars, 
whereas Web IE usually applies machine learning and pat-
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tern mining techniques to exploit the syntactical patterns or 
layout structures of the template-based documents. 

In this paper, we focus on IE from semi-structured 
documents and discuss only those that have been used for 
Web data. We will compare different WI systems using fea-
tures from three dimensions which we regard as criteria for 
comparing and evaluating WI systems. The rest of the pa-
per is organized as follows. Section 2 introduces related 
work on WI system taxonomy, which we summarize into 
three dimensions of evaluating WI systems. Section 3 sug-
gests the criteria for each dimension. We make a survey of 
contemporary IE tools in Section 4 with a running example 
to make such tools more understandable. A comparative 
analysis of the surveyed IE tools from the three dimensions 
is presented in Section 5. Finally, the conclusions are made 
in Section 6. 

2 RELATED WORK 
In the past few years, many approaches to WI systems, in-
cluding machine learning and pattern mining techniques, 
have been proposed, with various degrees of automation. 
In this section we survey the previously proposed taxono-
mies for IE tools developed by the main researchers. 

The Message Understanding Conferences (MUCs) have 
inspired the early work in IE. There are five main tasks de-
fined for text IE, including named entity recognition, 
coreference resolution, template element construction, tem-
plate relation construction and scenario template produc-
tion. The significance of the MUCs in the field of IE moti-
vates some researchers to classify IE approaches into two 
different classes: MUC Approaches (e.g., AutoSolg [1], LIEP 
[2], PALKA [3], HASTEN [4], and CRYSTAL [5]) and Post-
MUC Approaches (e.g., WHISK [6], RAPIER [7], SRV [8], 
WIEN [9], SoftMealy [10] and STALKER [11]). 

Hsu and Dung [10] classified wrappers into 4 distinct 
categories, including hand-crafted wrappers using general 
programming languages, specially designed programming 
languages or tools, heuristic-based wrappers, and WI ap-
proaches. Chang [12] followed this taxonomy and com-
pared WI systems from the user point of view and dis-
criminated IE tools based on the degree of automation. 
They classified IE tools into four distinct categories, includ-
ing systems that need programmers, systems that need an-
notation examples, annotation-free systems and semi-
supervised systems. 

Muslea, who maintains the RISE (Repository of Online 
Information Sources Used in Information Extraction Tasks) 
Web site, classified IE tools into 3 different classes according 
to the type of input documents and the struc-
ture/constraints of the extraction patterns [11]. The first 
class includes tools that process IE from free text using ex-
traction patterns that are mainly based on syntac-
tic/semantic constraints. The second class is called Wrapper 
induction systems which rely on the use of delimiter-based 
rules since the IE task processes online documents such as 
HTML pages. Finally, the third class also processes IE from 
online documents; however the patterns of these tools are 
based on both delimiters and syntactic/semantic con-
straints.   

Kushmerick classified many of the IE tools into two dis-
tinct categories finite-state and relational learning tools [13]. 
The extraction rules in finite-state tools are formally equiva-
lent to regular grammars or automata, e.g WIEN, SoftMealy 
and STALKER, while the extraction rules in relational learn-
ing tools are essentially in the form of Prolog-like logic pro-
grams, e.g. SRV, Crystal, WebFoot [14], Rapier and Pinoc-
chio [15]. 

Laender proposed a taxonomy for data extraction tools 
based on the main technique used by each tool to generate 
a wrapper [16]. These include languages for wrapper de-
velopment (e.g., Minerva [17], TSIMMIS [18] and WebOQL 
[19]), HTML-aware tools (e.g., W4F [20], XWrap [21] and 
RoadRunner [22]), NLP-based tools (e.g., WHISK, RAPIER 
and SRV), Wrapper induction tools (e.g., WIEN, SoftMealy 
and STALKER), Modeling-based tools (e.g., NoDoSE [23] 
and DEByE [24],[25], and Ontology-based tools (e.g., BYU 
[26]). Laender compared among the tools by using the fol-
lowing 7 features: degree of automation, support for com-
plex objects, page contents, availability of a GUI, XML out-
put, support for non-HTML sources, resilience, and adap-
tiveness. 

Sarawagi classified HTML wrappers into 3 categories ac-
cording to the kind of extraction tasks [27]. The first cate-
gory, record-level wrappers, exploits regularities to dis-
cover record boundaries and then extract elements of a sin-
gle list of homogeneous records from a page. The second 
category, page-level wrappers, extracts elements of multiple 
kinds of records. Finally, the site-level wrappers populate a 
database from pages of a Web site. 

Fig. 1. A free text IE task which is specified by the input (left) and its 
output (right).  

 

Fig. 2. A Semi-structured page containing data records (in rectangular 
box) to be extracted.  
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Kuhlins and Tredwell classified the toolkits for generat-
ing wrappers into two basic categories, based on commer-
cial and non-commercial availability [28]. They also con-
trasted the toolkits by using some features such as output 
methods, interface type, web crawling capability and GUI 
support. 

This survey shows three main dimensions for evaluating 
IE systems. First, the distinction of free text IE and online 
documents made by Muslea, the three-level of extraction 
tasks proposed by Sarawagi, and the capabilities of han-
dling non-HTML sources, together suggest the first dimen-
sion, which concerns the difficulty or the task domain that 
an IE task refers to. Second, the taxonomy of regular ex-
pression rules or Prolog-like logic rules, and that of deter-
ministic finite-state transducer or probabilistic hidden 
Markov models, prompts the second dimension which re-
lates the underlying techniques used in IE systems. Finally, 
the categorizations of programmer-involved, learning-
based or annotation-free approaches imply the third di-
mension which concerns the degree of automation. These 
three dimensions are discussed in the next section. 

3 THREE DIMENSIONS FOR COMPARING IE SYSTEMS 
Continuing our survey of various taxonomies, there are 
three dimensions to be used in the comparison. The first 
dimension evaluates the difficulty of an IE task, which can 
be used to answer the question “why an IE system fails to 
handle some Web sites with particular structures?” The 
second dimension compares the techniques used in differ-
ent IE systems. The third dimension evaluates both the ef-
fort made by the user for the training process and the ne-
cessity to port an IE system across different domains. From 
the user's point of view, the second dimension is less impor-
tant. However, researchers might get an overview of which 
machine-learning or data mining technologies have been 
used for WI through the comparison. In this section we de-
scribe each of these dimensions, and for each one we in-
clude a set of features that can be used as criteria for com-
paring and evaluating IE systems from the dimension pro-
spective.  

3.1 Task difficulties 
The input file of an IE task may be structured, semi-
structured or free-text. As shown in Figure 3, the definition 
of these terms varies across research domains. Soderland 
[14] considered free-texts e.g. news article, that are written 
in natural languages are unstructured, postings on news-
group (e.g. apartment rentals), medical records, equipment 
maintenance logs are semi-structured, while HTML pages 
are structured.  However, from the viewpoint of database 
researchers [29], the information stored in databases is 
known as structured data; XML documents are semi-
structured data for the schema information is mixed in with 
the data values, while Web pages in HTML are unstruc-
tured because there is very limited indication of the type of 
data. From our viewpoints, XML documents are considered 
as structured since there are DTD or XML schema available 
to describe the data. Free texts are unstructured since they 
require substantial natural language processing. For the 
large volume of HTML pages on the Web, they are consid-
ered as semi-structured [10] since the embedded data are 
often rendered regularly via the use of HTML tags.   

Thus, semi-structured inputs are the documents of a 
fairly regular structure and data in them may be presented 
in HTML or non-HTML format. One source of these large 
semi-structured documents is from the deep Web, which 
includes dynamic Web pages that are generated from struc-
tured databases with some templates or layouts. For exam-
ple, the set of book pages from Amazon has the same layout 
for the authors, title, price, comments, etc. Web pages that 
are generated from the same database with the same tem-
plate (program) form a page class. There are also semi-
structured HTML pages generated by hand.  For example, 
the publication lists from various researchers’ homepages 
all have title and source for each single paper, though they 
are produced by different people. For many IE tasks, the 
input are pages of the same class, still some IE tasks focus 
on information extraction from pages across various Web 
sites. 

In addition to the categorization by input documents, an 
IE task can be classified according to the extraction target. 
For example, Sarawagi classified HTML wrappers into re-
cord-level, page-level and site-level IE tasks. Record-level 
wrappers discover record boundaries and then divide them 
into separate attributes; page-level wrappers extract all data 
that are embedded in one Web page, while site-level wrap-
pers populate a database from pages of a Web site, thus the 
attributes of an extraction object are scattered across pages 
of a Web site. Academic researchers have devoted much 
effort to develop record-level and page-level data extrac-
tion, whereas industrial researchers have more interest in 
complete suites which support site-level data extraction. 

There are various ways to describe the extraction targets 
in a page. The most common structure (as proposed in 
NoDoSE, DEByE, and Stalker, etc.) is a hierarchical tree 
where the leaf nodes are basic types while the internal 
nodes are list of typles. A data object may be of a 
plain/nested structure. A plain text data-object has only 
one internal node (the root), while a nested data-object con-
tains more than two levels and internal nodes. Since these 
Web pages are intended to be human readable, tuples of the 

 

Fig. 3. Structurization of various documents.  
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same list, or elements of a tuple are often expressly sepa-
rated or delimited for easy visualization. However, the 
presentation formats or the set of attributes that form a 
data-object is subject to the following variations: 

• An attribute may have zero or more values (list of 1-
tuple) in a data-object. If the attribute has zero value, 
it is called a missing attribute; if it has more than one 
value, it is called a multi-valued attribute. The name 
of a book’s author may be an example of multi-
valued attribute, whereas a special offer, which is 
available only for certain books, is an example of 
missing attribute. 

• The set of attributes (A1, A2, …, Ak) may have multi-
ple ordering, i.e., an attribute Ai may have variant 
positions in different instances of a data-object; and 
we call this attribute a multi-ordering attribute. For 
example, a movie site might list the release date be-
fore the title for movies prior to 1999, but after the ti-
tle for recent movies. 

• An attribute may have variant formats along with 
different instances of a data-object. If the format of 
an attribute is not fixed, we might need disjunctive 
rules to generalize all cases. For example, an e-
commerce site might list prices in bold face, except 
for sale prices which are in red. So, price would be 
an example of a variant-format attribute in this site. 
On the other hand, different attributes in a data-
object may have the same format, especially in table 
presentation, where single <TD> tags are used to 
present various attributes. In such cases, order of at-
tributes is the key information to distinguish various 
attributes. However, if missing attributes occur or 
multi-ordering exists, the extraction rules for these 
attributes need to be revised.  

• Most IE systems handle input documents as strings 
of tokens for they are easier to process than strings 
of characters. Depending on the tokenization meth-
ods used, sometimes an attribute can not be decom-
posed into individual tokens. Such an attribute is 
called an untokenized attribute. For example, in a col-
lege course catalogue the department code has no 
delimiter separated it from the course number in 
strings such as “COMP4016” or “GEOL2001”. The 
granularity of extraction targets affects the deci-
sion/selections of tokenization schemes for an IE 
system. 

The combination of various input documents and varia-
tion of extraction targets causes different degrees of task 
difficulties. Since various IE systems are designed for vari-
ous IE tasks, it is not fair to compare them directly. How-
ever, analyzing what task an IE system targets and how it 
accomplishes the task, can be used to evaluate this system 
and possibly extend to other task domains.  

3.2 The Techniques Used 
For a wrapper to extract data from input it needs to token-
ize the input string, apply the extraction rules for each at-
tribute, assemble the extracted values into records, and re-

peat the process for all object instances in the input. There 
are various granularities for input string tokenization, in-
cluding tag-level and word-level encoding. The former en-
coding translates each HTML tag as a token and translates 
any text string between two tags as a special token, while 
the later, word-level, treats each word in a document as a 
token. Extraction rules can be induced by top-down or bot-
tom-up generalization, pattern mining, or logic program-
ming. The type of extraction rules may be expressed using 
regular grammars or logic rules. Some of the WI systems 
use path-expressions of the HTML parse tree path (e.g. 
html.head.title, and html->table[0]) as the features in ex-
traction rules; some use syntactic or semantic constraints, 
such as POS-tags and WordNet semantic class; while others 
use delimiter-based constraints, such as HTML tags or lit-
eral words, in the extraction rules. The extractor architec-
ture may require single or multiple passes over the pages.  

In summary, the features for comparing WI systems 
from the perspective of techniques used include: tokeniza-
tion/encoding schemes, scan pass, extraction rule type, features 
involved, and learning algorithm. 

3.3 Automation Degree 
As described above, a wrapper program has many phases 
to be accomplished: collecting training pages, labeling 
training examples, generalizing extraction rules, extracting 
the relevant data, and outputting the result in an appropri-
ate format. Most researches focus on the intermediate 3 
phases which involve the major extraction process, while 
some provide a total solution including a crawler or robot 
for collecting training pages (the first phase) and an output 
support  in XML format or back-end relational database for 
further information integration (the final phase). Generally 
speaking, the labeling phase defines/specifies the output of 
an extraction task and requires the involvement of users. 
However, some WI systems do not require the collected 
training examples to be labeled before the learning stage, 
instead, the labeling or annotation of the extracted data can 
be done after the generation of extraction rules (with or 
without users). This brings up a major difference in auto-
mation: for some WI systems, the user needs to label train-
ing examples; for others, the user simply waits for the sys-
tems to clean the pages and extract the data.  However, the 
automation does not come without reason. The cost is the 
applicability of these approaches to other task domain.  
Some even have limitation in the number and the type of 
input pages.  

In summary, the features we consider from the automa-
tion degree prospective include: user expertise needed for 
labeling data or for generating the extraction rules, applica-
bility of these approaches to other task domain, limitation 
for the number/type of input, page-fetching support for col-
lecting training pages, output support and API support for 
application integration. 

4 SURVEY FOR CONTEMPORARY IE SYSTEMS 
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The goal of WI is to automatically generate a wrapper that 
is used to extract the targets for an information resource. 
Let us consider the way how user interacts with WI sys-
tems. Earlier systems are designed to facilitate program-
mers in writing extraction rules, while later systems intro-
duce machine learning for automatic rule generalization. 
Therefore, the user interaction has evolved from writing 
extraction rules to labeling target extraction data. In recent 
years, more efforts are devoted to reducing labeling and 
creating WI systems with unlabelled training examples. 
Following this trend, we can classify WI systems into the 
four classes manually-constructed IE Systems, supervised IE 
Systems, semi-supervised IE Systems and unsupervised IE 
Systems.  

In this section we give a survey for most prominent and 
contemporary IE approaches. To make such approaches 
more understandable, we assume an IE task and describe 
the generated wrapper that can be used to extract informa-
tion from other similar documents for each approach. Fig-
ure 4 shows four Web pages as the input of the IE task. The 
desired output is the book title and the corresponding re-
views, including the reviewer name, rating and comments. 

4.1 Manually-constructed IE systems 
As shown on the right of Figure 5, in manually-constructed 
IE systems, users program a wrapper for each Web site by 
hand using general programming languages such as Perl or 
by using special-designed languages. These tools require 
the user to have substantial computer and programming 
backgrounds, so it becomes expensive. Such systems in-
clude TSIMMIS, Minerva, Web-OQL, W4F and XWRAP. 

TSIMMIS is one of the first approaches that give a frame-
work for manual building of Web wrappers [18]. The main 
component of this project is a wrapper that takes as input a 
specification file that declaratively states (by a sequence of 
commands given by programmers) where the data of inter-
est is located on the pages and how the data should be 
“packaged” into objects. For example, Figure 6(a) shows the 
specification file for our IE task in Figure 4. Each command 
is of the form: [variables, source, pattern], where source speci-
fies the input text to be considered, pattern specifies how to 
find the text of interest within the source, and variables are a 
list of variables that hold the extracted results. The special 

symbol ‘*’ in a pattern means discard, and ‘#’ means save in 
the variables. TSIMMIS then outputs data in Object Ex-
change Model (e.g. Figure 6(b)) that contains the desired 
data together with information about the structure and the 
contents of the result. TSIMMIS provides two important 
operators: split and case. The split operator is used to divide 
the input list element into individual elements (e.g. line 5). 
The case operator allows the user to handle the irregulari-
ties in the structure of the input pages. 

Minerva attempts to combine the advantages of a declara-
tive grammar-based approach with the flexibility of proce-
dural programming in handling heterogeneities and excep-
tions [17]. This is done by incorporating an explicit excep-
tion-handling mechanism inside a regular grammar. Excep-
tion-handling procedures are written in Minerva by using a 
special language called Editor. The grammar used by Mi-
nerva is defined in an EBNF style where a set of produc-
tions is defined; each production rule defines the structure 
of a non-terminal symbol (preceded by ‘$’) of the grammar. 
For example, Figure 7 shows the set of productions that can 
be used to extract (also, insert in a database) relevant at-
tributes for the defined IE task. As usual in EBNF notation, 
expression [p] denotes an optional pattern p; expression (p)* 
denotes that p may be repeated zero or more times. The 
nonterminal productions $bName, $rName, $rate, and $text 
immediately follow from their use in the definition of 
$Book. Thus, book name is preceded by “<b>Book 
Name</b>” and followed by “<b>” as indicated by pattern 
“*(?<b>)” which matches every thing before tag <b>.  The 
last production in Figure 7 defines a special non-terminal 
$TP (Tuple Production), which is used to insert a tuple in 
the database after each book has been parsed. For each pro-
duction rule, it is possible to add an exception handler con-
taining a piece of Editor code that can handles the irregu-
larities found in the Web data. Whenever the parsing of that 
production rule fails, an exception is raised and the corre-

<html>1<body>2

     <b>3 Book4 Name5 </b >6 Databases
     <b>7 Reviews8 </b >9

     <ol>10

          <li>11

<b>12 Reviewer13 Name14 </b>15 John
<b>16 Rating17 </b>18 7
<b>19 Text20 < /b>21 . ..

          </li>22

     </ol> 23

</body> 24</html>25

<html>1<body>2

     <b>3 Book4 Name5 </b >6 Query Opt.
     <b>7 Reviews8 </b >9
     <ol>10
          <li>11

<b>12 Reviewer13 Name14 </b>15 John
<b>16 Rating17 </b>18 8
<b>19 Text20 < /b>21 . ..

          </li>22

     </ol> 23

</body> 24</html>25

<html>1<body>2
     <b>3 Book4 Name5 </b>6 Data Mining
     <b>7 Reviews8 </b>9
     <ol>10
          <li> 11

<b>12 Reviewer13 Name14 </b>15 Jeff
<b>16 Rating17 </b>18 2
<b>19 Text20 </b>21 ...

          </li>22
          <li> 11

<b>12 Reviewer13 Name14 </b>15 Jane
<b>16 Rating17 </b>18 6
<b>19 Text20 </b>21 ...

          </li>22
     </ol>23

</body>24</html>25

<html>1<body>2

     <b>3 Book4 Name5 </b>6 Transactions
     <b>7 Reviews8 </b>9
     <ol>10
     </ol>23
</body>24</html>25

(a: pe1)

(b: pe2)

( c: pe3) (d: pe4)

Fig. 4. A running example of four Web pages (pe1-pe4). 

Labeled
Web Pages

User

Wrapper
Induction 
System

GUI
User3

Wrapper
User

Extracted Data

Un-labeled
Training

Web Pages

Supervised
Manual

Semi -supervised
Un-supervised

Test 
Page

GUI

Fig. 5. A general view of WI systems.  

root  complex {
        book_name  string  "Databases"
        reviews     complex {
             Reviewer_Name string   John
             Rating int        7
             Text string   … 
        }
}

1 [  [ "root", "get('pe1.html')", "#"],
2    [ "Book", "root" , "*<body >#</body>"],
3    [ "BookName", "Book", "*</b>#<b>"],
4    [ "Reviews", "Book ", "*<ol>#</ol>"],
5    [ "_Reviewer", "split(Reviews, '<li>')", "#"],
6    [ "Reviewer", "_Reviewer[0:0 ]", "#"],
7    [ "ReviewerName, Rating, Text", "Reviewer",
8      "*</b>#<b>*</b>#<b>*</b>#*"]  ]

(a) (b)

Fig. 6. (a) A TSIMMIS specification file and (b) the OEM output.  
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sponding exception handler is executed. 

WebOQL is a functional language that can be used as query 
language for the Web, for semistructured data and for web-
site restructuring [19]. The main data structure provided by 
WebOQL is the hypertree. Hypertrees are arc-lableled or-
dered trees which can be used to model a relational table, a 
Bibtex file, a directory hierarchy, etc. The abstraction level 
of the data model is suitable to support collections, nesting, 
and ordering. Figure 8 shows the hypertree for page pe1 of 
the running example. As shown in the figure, the tree struc-
ture is similar to the DOM tree structure where arcs are la-
beled with records with three attributes Tag, Source, Text, 
corresponding to tag name, the piece of HTML code, and 
the text excluding markup, respectively. The main construct 
provided by WebOQL is the familiar select-from-where. 
The language has the ability to simulate all operations in 
nested relational algebra and compute transitive closure on 
an arbitrary binary relation. As an example, the following 
query extracts the reviewer names “Jeff” and “Jane” from 
page pe2, where quote and exclamation mark denote the first 
subtree and the tail tree, respectively. The variables, de-
pending on the case, iterate over the simple trees or tail 
trees of the hypertree specified after operator “in”.  

Select [ Z!’.Text]  
From x in browse (“pe2.html”)’, y in x’, Z in y’  
Where x.Tag = “ol” and Z.Text=”Reviewer Name” 

In addition to manage the data using the hypertrees, the 
language can also be used to Web restructuring making the 
query result readable for other applications. 

W4F (Wysiwyg Web Wrapper Factory) is a Java toolkit to 
generate Web wrappers [20]. The wrapper development 
process consists of three independent layers: retrieval, ex-
traction and mapping layers. In the retrieval layer, a to-be-
processed document is retrieved (from the Web through 
HTTP protocol), cleaned and then fed to an HTML parser 
that constructs a parse tree following the Document Object 
Model (DOM). In the extraction layer, extraction rules are 
applied on the parse tree to extract information and then 
store them into the W4F internal format called Nested 
String List (NSL). In the mapping layer, the NSL structures 
are exported to the upper-level application according to 
mapping rules. Extraction rules are expressed using the 
HEL (HTML Extraction Language), which uses the HTML 
parse tree (i.e. DOM tree) path to address the data to be 

located. For example, to address the reviewer’s name “Jeff” 
and “Jane” from pe2, we can use expression 
<<html.body.ol[0].li[*].pcdata[0].txt>> where the symbol [*] 
can match any number (in this case, 0 and 1). The language 
also offers regular expressions and constraints to address 
finer pieces of data. For example, users can use regular ex-
pression to match or split (following the Perl syntax) the 
string obtained by DOM tree path. Finally, the fork operator 
allows the construction of nested string list by following 
multiple sub-paths at the same time. To assist the user ad-
dressing DOM tree path, the toolkit is designed with 
wysiwyg (what you see is what you get) support via smart 
wizards. 

XWrap is a system that exploits formatting information in 
Web pages to hypothesize the underlying semantic struc-
ture of a page [21]. It encodes the hypothetical structure and 
the extraction knowledge of the web pages in a rule-based 
declarative language designed specifically for XWrap. The 
wrapper generation process includes two phases: structure 
analysis, and source-specific XML generation. In the first 
phase, XWrap fetches, cleans up, and generates a tree-like 
structure for the page. The system then identifies regions, 
semantic tokens of interest and useful hierarchical struc-
tures of sections of the page by interacting with users 
through object (record) and element extraction steps. In the 
second phase, the system generates a XML template file 
based on the content tokens and the nesting hierarchy 
specification, and then constructs a source-specific XML 
generator. In a way, XWRap can be classified as supervised 
WI systems for no rule writing is necessary; however, it 
requires users’ understanding of the HTML parse tree, the 
identification of the separating tags for rows and columns 
in a table, etc. Thus, it is classified as systems that require 
special expertise of users. On the other hand, no specific 
learning algorithm is used here; the extraction rules are 
mainly based on DOM-tree path addressing. 

4.2 Supervised WI systems 
As shown in the left-bottom of Figure 5, supervised WI sys-
tems take a set of web pages labeled with examples of the 
data to be extracted and output a wrapper. The user pro-
vides an initial set of labeled examples and the system 
(with a GUI) may suggest additional pages for the user to 
label. For such systems, general users instead of program-

Page Book_Reviews
$Book_Reviews: <html><body> $Book </body></html>;
$Book:   <b>Book Name </b> $bName <b> Reviews </b>
              [<ol> ( <li><b> Reviewer Name </b> $rName <b>

      Rating </b>$rate <b> Text </b> $text $TP  )* </ol>];
$bName: *(?<b>);
$rName: *(?<b>);
$rate: *(?<b>);
$text: *(?</li>);

$TP: {
$bName, $rName
$rate
$text

}
END  

Fig. 7. A Minerva grammar in ENBF style. 

Tag: Body,
Source: <Body>…</Body>
Text: Book Name …

Tag: <b>
Source:<b>Book Name</b>
Text: Book Name

Tag: NOTAG
Source: Databases
Text: Database

Tag: <b>
Source:<b>Reviews</b>
Text: Reviews

Tag: OL,
Source: <ol>…</ol>
Text: Reviewer Name …

Tag: LI,
Source: <li>…</li>
Text: Reviewer Name …

Tag: NOTAG
Source: John
Text: John

Tag: <b>
Source: <b>Reviewer Name</b>
Text: Reviewer Name

Tag: <b>
Source:<b>Rating</b>
Text: Rating

Tag: NOTAG
Source: 7
Text: 7

Tag: <b>
Source:<b>Text</b>
Text: Text

Tag: NOTAG
Source: …
Text: …

Fig. 8. A WebOQL hypertree for the page pe1 in Figure 4.  
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mers can be trained to use the labeling GUI, thus reducing 
the cost of wrapper generation. Such systems are SRV, RA-
PIER, WHISK, WIEN, STALKER, SoftMealy, NoDoSE and 
DEByE. 

SRV is a top-down relational algorithm that generates sin-
gle-slot extraction rules [8]. It regards IE as a kind of classi-
fication problem. The input documents are tokenized and 
all substrings of continuous tokens (i.e. text fragments) are 
labeled as either extraction target (positive examples) or not 
(negative examples). The rules generated by SRV are logic 
rules that rely on a set of token-oriented features (or predi-
cates). These features have two basic varieties: simple and 
relational. A simple feature is a function that maps a token 
into some discrete value such as length, character type (e.g., 
numeric), orthography (e.g., capitalized) and part of speech 
(e.g., verb). A relational feature maps a token to another 
token, e.g. the contextual (previous or next) tokens of the 
input tokens. The learning algorithm proceeds as FOIL, 
starting with entire set of examples and adds predicates 
greedily to cover as many positive examples and as few 
negative examples as possible. For example, to extract the 
rating score for our running example, SRV might return 
rule like Figure 9(a), which says rating is a single numeric 
word and occurs within a HTML list tag. 

RAPIER also focuses on field-level extraction but uses bot-
tom-up (compression-based) relational learning algorithm 
[7], i.e. it begins with the most specific rules and then re-
placing them with more general rules. RAPIER learns sin-
gle slot extraction patterns that make use of syntactic and 
semantic information including part-of-speech tagger or a 
lexicon (WordNet). The extraction rules consist of three dis-
tinct patterns. The first one is the pre-filler pattern that 
matches text immediately preceding the filler, the second 
one is the pattern that match the actual slot filler, finally the 
last one is the post-filler pattern that match the text imme-
diately following the filler. As an example, Figure 9(b) 
shows the extraction rule for the book title, which is imme-
diately preceded by words “Book”, “Name”, and “</b>”, 
and immediately followed by the word “<b>”. The “Filler 
pattern” specifies that the title consists of at most two 
words that were labeled as “nn” or “nns” by the POS tagger 
(i.e., one or two singular or plural common nouns). 

WIEN: Kushmerick identified a family of six wrapper 
classes, LR, HLRT, OCLR, HOCLRT, N-LR and N-HLRT for 
semi-structured Web data extraction [9]. WIEN focuses on 
extractor architectures. The first four wrappers are used for 
semi-structured documents, while the remaining two 
wrappers are used for hierarchically nested documents. The 
LR wrapper is a vector of 2K delimiters for a site containing 

K attributes. For example, the vector (‘Reviewer name 
</b>’, ‘<b>’, ‘Rating </b>’, ‘<b>’, ‘Text </b>’, ‘</li>’) can 
be used to extract 3-slot book reviews for our running ex-
ample. The HLRT class uses two additional delimiters to 
skip over potentially-confusing text in either the head or 
tail of the page. The OCLR class uses two additional delim-
iters to identify an entire tuple in the document, and then 
uses the LR strategy to extract each attribute in turn. The 
HOCLRT wrapper combines the two classes OCLR and 
HLRT. The two wrappers N-LR and N-HLRT are extension 
of LR and HLRT and designed specifically for nested data 
extraction. Note that, since WIEN assumes ordered attrib-
utes in a data record, missing attributes and permutation of 
attributes can not be handled. 

WHISK uses a covering learning algorithm to generate 
multi-slot extraction rules for a wide variety of documents 
ranging from structured to free text [6]. When applying to 
free text, WHISK works best with input that has been anno-
tated by a syntactic analyzer and a semantic tagger. WHISK 
rules are based on a form of regular expression patterns 
that identify the context of relevant phrases and the exact 
delimiters of those phrases. It takes a set of hand-tagged 
training instances to guide the creation of rules and to test 
the performance of the proposed rules. WHISK induces 
rules top-down, starting from the most general rule that 
covers all instances, and then extending the rule by adding 
terms one at a time. For example, to generate 3-slot book 
reviews, it start with empty rule “*(*)*(*)*(*)*”, where each 
parenthesis indicates a phrase to be extracted. The phrase 
within the first set of parentheses is bound to the first vari-
able $1, and the second to $2, and forth. Thus, the rule in 
Figure 10 can be used to extract our 3-slot book reviews for 
our running example. If part of the input remains after the 
rule has succeeded, the rule is re-applied to the rest of the 
input. Thus, the extraction logic is similar to the LR wrap-
per for WIEN. 

NoDoSE: Opposed to WIEN, where training examples are 
obtained from some oracles that can identify interesting 
types of fields within a document, NoDoSE provides an 
interactive tool for users to hierarchically decompose semi-
structured documents (including plain text or HTML pages) 
[23]. Thus, NoDoSE is able to handle nested objects. The 
system attempts to infer the format/grammar of the input 
documents by two heuristic-based mining components: one 
that mines text files and the other parses HTML code. Simi-
lar to WIEN, the mining algorithms try to find common 
prefix and suffix as delimiters for various attributes. Al-
though it does not assume the order of attributes within a 
record to be fixed, it seeks to find a totally consistent order-
ing for various attributes in a record. The result of this task 
is a tree that describes the structure of the document. For 
example, to generate a wrapper for the running example, 
the user can interact with the NoDoSE GUI to decompose 
the document as a record with two fields: a book title (an 

BookTitle extraction rule:-

Pre-filler pattern
(1) word: Book
(2) word: Name
(3) word: </b>

Rating extraction rule:-
      length (=1),
      every (numeric true),
      every (in_list true).

(a) (b)

Filler pattern
list: len: 2
Tag: [nn, nns]

Post -filler pattern
word: <b>

Fig. 9. A SRV (a) and Rapier (b) extraction rules.  

Pattern:: * ‘Reviewer Name </b>’ (Person) ‘<b>’ * (Digit) ‘<b>Text</b>’(*) ‘</li>’
Output :: BookReview {Name $1} {Rating $2} {Comment $3}

Fig. 10. A WHISK extraction rule.  
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attribute of type string) and a list of Reviewer, which is in 
turn a record of the three fields RName (string), Rate (inte-
ger), and Text (string). Next, NoDoSE then automatically 
parses them and generates the extraction rules. 

SoftMealy: In order to handle missing attributes and at-
tribute permutations in input, Hsu and Dung introduce the 
idea of finite-state transducer (FST) to allow more variation 
on extractor structures [10]. A FST consists of two different 
parts: the body transducer, which extract the part of the page 
that contains the tuples (similar to HLRT in WIEN), and the 
tuple transducer which iteratively extracts the tuples from 
the body. The tuple transducer accepts a tuple and returns 
its attributes. Each distinct attribute permutation in the 
page can be encoded as a successful path from start state to 
the end state of the tuple transducer; and the state transi-
tions are determined by matching contextual rules that de-
scribe the context delimiting two adjacent attributes. Con-
textual rules consist of individual separators that represent 
invisible borderlines between adjacent tokens; and an in-
ductive generalization algorithm is used to induce these 
rules from training examples. Figure 11 shows an example 
of FST that can be used to extract the attributes of the book 
reviews: the reviewer name (N), the rating (R), and the 
comment (T). In addition to the begin and end states, each 
attribute, A , is followed by a dummy state, A . Each arc is 
labeled with the contextual rule that enables the transition 
and the tokens to output. For example, when the state tran-
sition reaches to the R state, the transducer will extract the 
attribute R until it matches the contextual rules s<R, R > 
(which is composed of s<R, R >L and s<R, R >R). The state 
R and the end state are connected if we assume no com-
ment can occur. 

STALKER is a WI system that performs hierarchical data 
extraction [11]. It introduces the concept of embedded cata-
log (EC) formalism to describe the structure of a wide range 
of semi-structured documents. The EC description of a page 
is a tree-like structure in which the leaves are the attributes 
to be extracted and the internal nodes are lists of tuples. For 
each node in the tree, the wrapper needs a rule to extract 
this node from its parent. Additionally, for each list node, 
the wrapper requires a list iteration rule that decomposes 
the list into individual tuples. Therefore, STALKER turns 
the difficult problem of extracting data from an arbitrary 
complex document into a series of easier extraction tasks 
from higher level to lower level. Moreover, the extractor 

uses multi-pass scans to handle missing attributes and mul-
tiple permutations. The extraction rules are generated by 
using of a sequential covering algorithm, which starts from 
linear landmark automata to cover as many positive exam-
ples as possible, and then tries to generate new automata 
for the remaining examples. A Stalker EC tree that describes 
the data structure of the running example is shown in Fig-
ure 12(a), where some of the extraction rules are shown in 
Figure 12(b). For example, the reviewer ratings can be ex-
tracted by first applying the List(Reviewer) extraction rule 
(which begins with “<ol>” and ends with “</ol>”) to the 
whole document, and then the Rating extraction rule to 
each individual reviewer, which is obtained by applying the 
iteration rule for List(Reviewer). In a way, STALKER is 
equivalent to multi-pass Softmealy [30]. However, the ex-
traction patterns for each attribute can be sequential as op-
posed to the continuous patterns used by Softmealy. 

DEByE (Data Extraction By Example): Like NoDoSE, DE-
ByE provides an interactive GUI for wrapper generation 
[24], [25]. The difference is that in DEByE the user marks 
only atomic (attribute) values to assemble nested tables, 
while in NoDoSE the user decomposes the whole document 
in a top-down fashion. In addition, DEByE adopts a bot-
tom-up extraction strategy which is different from other 
approaches. The main feature of this strategy is that it ex-
tracts atomic components first and then assembles them 
into (nested) objects. The extraction rules, called attribute-
value pair patterns (AVPs), for atomic components are iden-
tified by context analysis: starting with context length 1, if 
the number of matches exceeds the estimated number of 
occurrences provided by the user, it adds additional terms 
to the pattern until the number of matches is less than the 
estimated one. For example, DEByE generates AVP pat-
terns, “Name</b>* <b>Reviews”, “Name</b>*<b> Rat-
ing”, “Rating</b>*<b>Text” and “</b>*<li>” for book 
name, reviewer name, rating and comment respectively (* 
denotes the data to be extracted). The resulting AVPs are 
then used to compose an object extraction pattern (OEPs). 
OEPs are trees containing information on the structure of 
the document. The sub-trees of an OEP are themselves 
OEPs, modeling the structure of component objects. At the 
bottom of the hierarchy lie the AVPs that used to identify 
atomic components. The assemble of atomic values into 
lists or tuples is based on the assumption that various oc-
currences of objects do not overlap each other. For non-
homogeneous objects, the user can specify more than one 
example object, thus creating a distinct OEP for each exam-
ple. 

s< N , R>L
 ::= HTML(<b>) C1Alph(Rating) HTML(</b>)

s< N , R>R  ::= Spc(-) Num(-)

s<R, R >L  ::= Num(-)

s<R, R >R  ::= NL(- ) HTML(<b>)

b eN N R R T

s<b,N>/
“N=”+
next_tokn

s<N , R>/
“R =”+
next_tokn

s<R, T >/
“T=”+
next_tokn

?/next_token ?/next_token ?/next_token?/ε ?/ε ?/ε

s<N, N>
/ ε

s<T, e>
/ ε

s<R, e> / ε

s< R , R>
/ ε

Fig. 11. A FST for the Web pages in the running example.  

Whole document Extraction rule for List(Reviewer):
    SkipTo(<ol>) SkipTo(</ol>)

Iteration rule for List(Reviewer):
    SkipTo(<li>) SkipTo(</li>)

Extraction rule for Rating:
    SkipTo(Rating </b>) SkipTo(<b>)

List(Reviewer)Name

Rate TextName

(a) (b)

Fig. 12. An EC tree (a), and a Stalker extraction rule (b).  
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4.3 Semi-Supervised IE systems 
The systems that we categorize as semi-supervised IE sys-
tems include IEPAD, OLERA and Thresher. As opposed to 
supervised approach, OLERA and Thresher accept a rough 
(instead of a complete and exact) example from users for 
extraction rule generation, therefore they are called semi-
supervised. IEPAD, although requires no labeled training 
pages, post-effort from the user is required to choose the 
target pattern and indicate the data to be extracted. All 
these systems are targeted for record-level extraction tasks. 
Since no extraction targets are specified for such systems, a 
GUI is required for users to specify the extraction targets 
after the learning phase. Thus, users’ supervision is in-
volved. 

IEPAD is one of the first IE systems that generalize extrac-
tion patterns from unlabeled Web pages [31]. This method 
exploits the fact that if a Web page contains multiple (ho-
mogeneous) data records to be extracted, they are often 
rendered regularly using the same template for good visu-
alization. Thus, repetitive patterns can be discovered if the 
page is well encoded. Therefore, learning wrappers can be 
solved by discovering repetitive patterns. IEPAD uses a 
data structure called PAT trees which is a binary suffix tree 
to discover repetitive patterns in a Web page. Since such a 
data structure only records the exact match for suffixes, 
IEPAD further applies center star algorithm to align multi-
ple strings which start from each occurrence of a repeat and 
end before the start of next occurrence. Finally, a signature 
representation is used to denote the template to compre-
hend all data records. For our running example, only page 
pe2 can be used as input to IEPAD. By encoding each tag as 
an individual token and any text between two adjacent tags 
as a special token “T”, IEPAD discover the pattern 
“<li><b>T</b>T<b>T</b>T <b>T</b>T</li>” with  two 
occurrences. The user then has to specify, for example, the 
2nd, 4th and 6th “T” tokens, as the relevant data (denoting 
reviewer name, rating and comment, respectively). 

OLERA is a semi-supervised IE system that acquires a 
rough example from the user for extraction rule generation 
[32]. OLERA can learn extraction rules for pages containing 
single data records, a situation where IEPAD fails. OLERA 
consists of 3 main operations. (1) Enclosing an information 
block of interest: where the user marks an information block 
containing a record to be extracted for OLERA to discover 
other similar blocks (using approximate matching tech-
nique) and generalize them to an extraction pattern (using 
multiple string alignment technique). (2) Drilling-down/rolling-
up an information slot: drilling-down allows the user to 
navigate from a text fragment to more detailed compo-
nents, whereas rolling-up combines several slots to form a 
meaningful information unit. (3) Designating relevant infor-
mation slots for schema specification as in IEPAD.  

Thresher [33] is also a semi-supervised approach that is 
similar to OLERA. The GUI for Thresher is built in the Hay-

stack browser which allows users to specify examples of 
semantic contents by highlighting them and describing 
their meaning (labeling them). However, it uses tree edit 
distance (instead of string edit distance as in OLERA) be-
tween the DOM subtrees of these examples to create a 
wrapper. Then it allows the user to bind the semantic web 
language RDF (Resource Description Framework) classes 
and predicates to the nodes of these wrappers. 

4.4 Un-Supervised IE systems 
As shown at the left-top of Figure 5, unsupervised IE sys-
tems do not use any labeled training examples and have no 
user interactions to generate a wrapper. Unsupervised IE 
systems, RoadRunner and EXALG, are designed to solve 
page-level extraction task, while DeLa and DEPTA are de-
signed for record-level extraction task. In contrast to super-
vised IE systems where the extraction targets are specified 
by the users, the extraction target is defined as the data that 
is used to generate the page or non-tag texts in data-rich 
regions of the input page. In some cases, several schemas 
may comply with the training pages due to the presence of 
nullable data attributes, leading to ambiguity [34]. The 
choice of determining the right schema is left to users. Simi-
larly, if not all data is needed, post-processing may be re-
quired for the user to select relevant data and give each 
piece of data a proper name. 

DeLa: As an extension of IEPAD, DeLa [35], [36] removes 
the interaction of users in extraction rule generalization and 
deals with nested object extraction. The wrapper generation 
process in DeLa works on two consecutive steps. First, a 
Data-rich Section Extraction algorithm (DSE) is designed to 
extract data-rich sections from the Web pages by comparing 
the DOM trees for two Web pages (from the same Web site), 
and discarding nodes with identical sub-trees. Second, a 
pattern extractor is used to discover continuously repeated 
(C-repeated) patterns using suffix trees. By retaining the 
last occurrence for each discovered pattern, it discover new 
repeated patterns from the new sequence iteratively, form-
ing nested structure. For example, given the string se-
quence “<P><A>T</A><A>T 
</A>T</P><P><A>T</A>T</P>”, DeLa will discover 
“<P><A>T</A>T<P>” from the immediate sequence 
“<P><A>T</A>T</P><P><A>T</A>T</P>” and return 
parenthesized pattern “(<P>(<A>T</A>)*T<P>)*” to de-
note the nested structure. Since a discovered pattern may 
cross the boundary of a data object, DeLa tries K pages and 
selects the one with the largest page support. Again, each 
occurrence of the regular expression represents one data 
object. The data objects are then transformed to a relational 
table where multiple values of one attribute are distributed 
into multiple rows of the table. Finally, labels are assigned 
to the columns of the data table by four heuristics, includ-
ing element labels in the search form or tables of the page 
and maximal-prefix and maximal-suffix shared by all cells 
of the column.  
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RoadRunner considers the site generation process as en-
coding of the original database content into strings of 
HTML code [22]. As a consequence, data extraction is con-
sidered as a decoding process. Therefore, generating a 
wrapper for a set of HTML pages corresponds to inferring a 
grammar for the HTML code. The system uses the ACME 
matching technique to compare HTML pages of the same 
class and generate a wrapper based on their similarities and 
differences. It starts from comparing two pages, using the 
ACME technique to align the matched tokens and collapse 
for mismatched tokens. There are two kinds of mismatches: 
string mismatches that are used to discover attributes 
(#PCDATA) and tag mismatches that are used to discover 
iterators (+) and optional (?). Figure 13 shows both an ex-
ample of matching for the first two pages of the running 
example and its generated wrapper. Since there can be sev-
eral alignments, RoadRunner adopts UFRE (union-free 
regular expression) to reduce the complexity. The alignment 
result of the first two pages is then compared to the third 
page in the page class. In addition to the module for tem-
plate deduction, RoadRunner also includes two modules, 
Classifier and Labeler to facilitate wrapper construction. 
The first module, Classifier, analyzes pages and collects 
them into clusters with a homogeneous structure, i.e. pages 
with the same template are clustered together. The second 
module, Labeler, discovers attribute names for each page 
class. 

EXALG: Arasu and Molina presented an effective formula-
tion for the problem of data extraction from Web pages [37]. 
The input of EXALG is a set of pages created from the un-
known template T and the values to be extracted. EXALG 
deduces the template T and uses it to extract the set of val-
ues from the encoded pages as an output. EXALG detects 

the unknown template by using the two techniques differen-
tiating roles and equivalence classes (EC). In the former tech-
nique, the occurrences with two different paths of a particu-
lar token have different roles. For example, in the running 
example, the role of “Name” when it occurs in “Book 
Name” (i.e., Name5) is different from its role when it occurs 
in “Reviewer Name” (i.e., Name14). In the later technique, 
an equivalence class is a maximal set of tokens having the 
same occurrence frequencies over the training pages (occur-
rence-vector). For example, in Figure 4, the two tokens 
<html>1 and <body>2 have the same occurrence-vector (<1, 
1, 1, 1>), so they belong to the same equivalence class. The 
insight is that template tokens that encompass a data tuple 
have the same occurrence vector and form an equivalence 
class. However, to avoid data tokens to accidentally form 
an equivalence class, ECs with insufficient support (the 
number of pages containing the tokens) and size (the num-
ber of tokens in an EC) are filtered. In addition, to conform 
to the hierarchical structure of the data schema, equivalence 
classes must be mutually nested and the tokens in an EC 
must be ordered. Those valid ECs are then used to con-
struct the original template. 

DEPTA (Data Extraction based on Partial Tree Alignment): 
Like IEPAD and DeLa, DEPTA can be only applicable to 
Web pages that contain two or more data records in a data 
region. However, instead of discovering repeat substring 
based on suffix trees, which compares all suffixes of the 
HTML tag strings (as the encoded token string described in 
IEPAD), it compares only adjacent substrings with starting 
tags having the same parent in the HTML tag tree (similar 
to HTML DOM tree but only tags are considered). The in-
sight is that data records of the same data region are re-
flected in the tag tree of a Web page under the same parent 
node. Thus, irrelevant substrings do not need to be com-
pared together as that in suffix-based approaches. Further-
more, the substring comparison can be computed by string 
edit distance instead of exact string match when using suf-
fix trees where only completely similar substrings are iden-
tified. The described algorithm, called MDR [38], works in 
three steps. First, it builds an HTML tag tree for the Web 
page as shown in Figure 14 where text strings are disre-
garded. Second, it compares substrings for all children un-
der the same parent. For example, we need to make two 
string comparison, (b1, b2) and (b2, ol), under parent node 
<body>, where the tag string node <ol> is represented by 

Wrapper (initially, pe1)

01:    <html><body>
02:    <b>
03:        Book Name
04:    </b>
05:    Databases
06:    <b>
07:        Reviews
08:    </b>
09:    <OL>
10:    <LI>
11:        <b> Reviewer Name </b>
12:        John
13:        <b> Rating </b>
14:        7
15:        <b>Text </b>
16:        …
17:    </LI>
18: </OL>
19:</body></html>

Sample page (pe2 )

01:    <html><body>
02:    <b>
03:        Book Name
04:    </b>
05:    Data mining
06:    <b>
07:        Reviews
08:    </b>
09:    <OL>
10:    <LI>
11:        <b> Reviewer Name </b>
12:        Jeff
13:        <b> Rating </b>
14:        2
15:        <b>Text </b>
16:        …
17:    </LI>
18:    <LI>
19:        <b> Reviewer Name </b>
20:        Jane
21:        <b> Rating </b>
22:        6
23:        <b>Text </b>
24:        …
25:    </LI>
26: </OL>
27:</body></html>

Parsing

String mismatch

String mismatch

String mismatch

String mismatch

<html><body><b> Book Name </b>
#PCDATA<b> Reviews </b>
<OL>
     (<LI><b> Reviewer Name </b> #PCDATA
               <b> Rating </b> #PCDATA
                <b>Text </b> #PCDATA </LI> )+
</OL></body></html>

Wrapper after solving mismatch

Terminal search match
Tag mismatch

Fig. 13. Matching the first two pages of the running example (taken 
from [22]).  

Fig. 14. The tag tree (left) and the DOM tree (as a comparison) for 
page pe2 in Figure 4.  
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“<li><b><b><b><li><b><b><b>”. If the similarity is 
greater than a predefined threshold (as shown in the 
shaded nodes in Figure 14), the nodes are recorded as data 
regions. The third step is designed to handle situations 
when a data record is not rendered contiguously as as-
sumed in previous works. Finally, the recognition of data 
items or attributes in a record is accomplished by partial 
tree alignment [39]. Tree alignment is better than string 
alignment for it considers tree structure, thus, reducing the 
number of possible alignments. The algorithm first chooses 
the record tree with the largest number of data items as 
center and then matches other record trees to the center 
tree. However, DEPTA only adds tag nodes to the center 
tree when the positions of the tag nodes can be uniquely 
determined in the center tree. For remained nodes, they are 
processed in the next iteration after all tag trees are proc-
essed. Note that DEPTA assumes that non-tag tokens are 
data items to be extracted, thus, it extracts not only the re-
viewer name, rating and comments, but also the labels 
“Reviewer Name”, “Rating”, and “Text” for page pe2 in our 
running example. Further, DEPTA is limited to handle 
nested data records. So, a new algorithm, NET, is devel-
oped to handle such data records by performing a post-
order traversal of the visual-based tag tree of a Web page 
and matching subtrees in the process using a tree edit dis-
tance method and visual cues [40]. 

 
Of the unsupervised WI approaches, one important issue 

is to differentiate the role of each token: either a data token 
or template token. Some assume that every HTML tag is 
generated by the template and other tokens are data items 
to simplify the issue (as in DeLa and DEPTA). However, the 
assumption does not hold for many collections of pages 
(therefore, IEPAD and OLERA simply leave the issue to 
distinguish between data and template tokens to the users). 
RoadRunner also assumes that every HTML tag is gener-
ated by the template, but other matched string tokens are 
also considered as part of the template.  In comparison, 
EXALG has the most detailed tokenization method while 
more flexible assumption where each token can be a tem-
plate token if there are enough tokens to form frequently 
occurring equivalence class.  

On the other hand, DEPTA conducts the mining process 
from single Web pages, while RoadRunner and EXALG do 
the analysis from multiple Web pages (While DeLa takes 
advantages of multiple input pages for data-rich section 
extraction and generalized pattern construction, it discovers 
C-repeat patterns from single Web pages.). The later, in our 
viewpoint, is the key point that is used to differentiate the 
role of each token. Thus, multiple pages of the same class is 
also used to discover data rich section (as in DeLa) or 
eliminate noisy information (as in [41]). Meanwhile, the 
adaptation of tree matching in DEPTA (as well as Thresher) 
also provides better result than string matching techniques 
used in IEPAD and RoadRunner. EXALG similarly does not 
make full use of the tree structure although the DOM tree 
path information is used for differentiating token roles. Fi-
nally, since information extraction is only a part of a wrap-

per program or information integration systems, additional 
tasks like page fetching, label assignment, and mapping 
with other web data sources are remained to be processed. 

Due to space limitation, we are not able to compare all 
researches here. For example, ViNTs [42] is a record-level 
wrapper generation system which exploits visual informa-
tion to find separators between data regions from search 
result pages. However, the algorithm can be only applicable 
to pages that contain at least four data records. Another 
related approach that has been applied on Web sites for 
extracting information from tables is [43]. The technique 
relies on the use of additional links to a detail page contain-
ing additional information about that item. In parallel to the 
efforts to detect Web tables, other researchers have worked 
in detecting tables in plain text documents (such as gov-
ernment statistical reports) and segmenting them into re-
cords [44]. Since these approaches do not address the prob-
lem of distinguish data tokens from template tokens, we 
consider them as semi-supervised approaches. 

5 A COMPARATIVE ANALYSIS OF IE TOOLS 
Although many researchers have developed various tools 
for data extraction from Web pages, there has been only a 
limited amount of effort to compare such tools. Unfortu-
nately, in only a few cases can results generated by distinct 
tools be directly comparable. From our viewpoint, even in 
these few cases, the main goal of the comparison is for a 
survey. Therefore, in this section, we use the criteria of the 3 
dimensions suggested in section 3 to compare the surveyed 
IE tools. 

5.1 Task Domain-based comparison 
In this section, we contrast among the capabilities of the 
surveyed IE systems to support various IE tasks as shown 
in Table 1. The features in this dimension include input 
variation, such as page type, Non-HTML support, and out-
put variation such as extraction level, attribute variation 
and template variation. 

Page Type: We first compare the input documents that each 
IE system targets. As discussed above, Web pages may be 
structured, semi-structured or free-text Web pages according 
to the level of structurization. For example, manual or su-
pervised IE systems are designed to extract information 
from cross-website pages (e.g. professor data from various 
universities), while semi-supervised and supervised IE sys-
tems are designed primarily for extracting data from the 
deep Web (template pages). Thus, the latter systems depend 
heavily on the common template that is used to generate 
Web pages, while the former have included more features 
of the tokens (e.g. the number of characters, the fraction of 
upper-case letters, etc.) for inducing extraction rules. By 
incorporating more characteristics of the template pages, 
unsupervised IE systems present high-degree automation 
for extraction rule generalization; in contrast, the extension 
to non-template pages is rather limited.  
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Non-HTML Support (NHS): The support for non-HTML 
inputs depends on the features or background knowledge 
used by the IE systems. Thus, when an IE system fails to 
generalize extraction rules for an IE task, we (the program-
mers) know how to or what to adjust the system for such a 
task. Most supervised systems can support non-HTML 
documents by modifying the generalization hierarchy (e.g. 
Softmealy) or adding new token features (e.g. SRV). Manual 
systems such as Minerva and TSIMMIS, where extraction 
rules are written by hand, can be adapted by the wrapper 
developer to handle non-HTML documents. Some wrap-
pers, e.g. WebOQL, W4F, XWrap, and DEPTA, rely heavily 
on the use of DOM trees information in their systems, so 
they cannot support non-HTML documents, while se-
quence based approaches, such as IEPAD, OLERA, Road-
Runner, and DeLa can be adapted to handle non-HTML 
documents by adding proper encoding schemes. The 
equivalence class technology of EXALG also supports non-
HTML documents, but the success depends on token role 
differentiation. 

Extraction Level: IE tasks can be classified into four catego-
ries: field-level, record-level, page-level and site-level. Ra-
pier and SRV are designed to extract single-slot records, or 
equivalently field-level extractions. Wrappers in EXALG 
and RoadRunner extract the embedded data objects in 
whole pages which may contain records of multiple kindes, 
so wrappers in these systems are page-level. The other re-
maining systems in Table 1 are examples of record-level IE 
tasks, although some can be extended for page-level extrac-
tion, e.g. NoDoSE, STALKER, etc. Most record-level IE sys-
tems discover record boundaries and then divide them into 
separate items, while the bottom-up extraction strategy in 
DEByE extracts a set of attributes and then assembles them 
to form a record. So far, there are no site-level IE systems. 

Extraction Target Variation: Many Web pages are hierarchi-
cally organized with multiple nesting levels. Typically, this 
complex structure is loose, presenting variations on semi-
structured data. The complex degree of an extraction target 
(data object) depends on the appearance of missing attrib-
utes (MA), multiple-valued attributes (MVA), multi-

TABLE 1
ANALYSIS BASED ON THE TASK DOMAINS 

Extraction Targets Variation Template Variation 
Tools Page 

Type NHS Extraction 
Level MA/MVA MOA Nested VF CT 

 

UTA 

Minerva Semi-S Yes Record Level Yes Yes Yes Both By Order Yes 

TSIMMIS Semi-S Yes Record Level Yes No Yes Disj By Order No 

WebOQL Semi-S No Record Level Yes Yes Yes Disj By Order No 

W4F Temp No Record Level Yes Yes Yes SP By Order Yes 

M
an

ua
l 

XWRAP Temp No Record Level Yes No Yes SP By Order Yes 

RAPIER Free Yes Field Level Yes -- -- Disj More 
constraints Yes 

SRV Free Yes Field Level Yes -- -- Disj More 
constraint Yes 

WHISK Free Yes Record Level Yes Yes No Disj By Order Yes 

NoDoSE Semi-S Yes Page/Record Yes Limited Yes No By Order No 

DEByE Semi-S Yes Record Level Yes Yes Yes Disj More 
constraint No 

WIEN Semi-S Yes Record Level No No Limited No By Order No 

STALKER Semi-S Yes Record Level Yes Yes Yes Both More 
constraint No 

Su
pe

rv
is

ed
 

SoftMealy Semi-S Yes Record Level Yes Limited Multi 
Pass Disj By Order/ 

SinglePass Yes 

IEPAD Temp Limited Record Level Yes Limited Limited Both By Order Yes 

Se
m

i-S
up

er
vi

se
d 

OLERA Temp Limited Record Level Yes Limited Limited Both By Order Yes 

DeLa Temp Limited Record Level Yes Limited Yes Both By Order No 

RoadRunner Temp Limited Page Level Yes No Yes No By Order No 

EXALG Temp Limited Page Level Yes No Yes Both By Order No 

U
n-

Su
pe

rv
is

ed
 

DEPTA Temp No Record Level Yes No Limited Disj  By Order No 
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ordering attributes (MOA), and nested data objects. To 
handle these variations, the extracting procedure needs 
special care in addition to its usual logic where attributes 
appear exactly once without ordering and nesting issues. 
Understanding how various IE systems support these 
variations can help us decide how to tailor an IE system to 
new tasks. Note that for field-level extraction systems (SRV 
and Rapier), handling of these variations does not present 
specific difficulties, since they do not deal with the relation-
ships of attributes in the data objects. 

Most IE systems support missing attributes and multi-
ple-valued attributes extraction, except for WIEN and 
WHISK. The special care for programming-based IE sys-
tems is usually an exception handler, e.g. Minerva, W4F 
and WebOQL. In TSIMMIS, two operators “case” and 
“split” are designed to handle missing attributes and mul-
tiple-valued attributes. Many IE systems do not support 
multiple-ordering attributes since their extraction rules de-
pend on the location of the fields within a record. Hsu was 
a pioneer who attempted to overcome the problem of mul-
tiple ordering attributes. However, from our viewpoint, the 
situations he handled were instances of missing attributes. 
So, we consider that SoftMealy is limited to handle MOA 
using single-pass finite state transducer (FST). The use of 
FST in SoftMealy, also make it possible to handle MA and 
MVA. In overall, SoftMealy can handle objects of nested 
structures through multi-pass FST. Stalker can handle MOA 
and nested object extraction by multi-pass scans over the 
input data. Other IE systems (IEPAD, OLERA and DeLa), 
make use of alignment technique to form disjunctive rules 
to handle MA, MVA, MOA. In addition, the use of multiple 
encoding schemes in IEPAD and OLERA give them the op-
portunity to handle more complex nested data objects. The 
two heuristic-based mining components in NoDoSE and 
the bottom-up strategy (where the set of attributes are rec-
ognized, extracted and stored in a set variable prior to the 
object itself) in DEByE give these systems the ability to 
handle MOA and nested data objects in overall. RoadRun-
ner and EXALG did not support MOA because their extrac-
tion rules depend on the location of the attributes within a 
record, although in overall, they can handle nested data 
objects. DEPTA, theoretically can support nested data ob-
jects by exploiting the tag tree structure. MOA is not possi-
ble in DEPTA since the partial tree match is based on 
unique order of the tag children with the same parent. 

Template Variation: The difficulties in extraction rule in-
duction come from the variant formats of the data in-
stances. As described in Section 3.1, an attribute may have 
variant formats (VF), which usually require disjunctive rule 
supports or sequential rule supports. Some IE systems sup-
port both disjunctive rules and sequential patterns (SP) for 
rule generalization. To the best of our knowledge, WIEN, 
W4F, XWrap, NoDoSE, and RoadRunner do not support 
disjunctive rules. However, W4F and XWrap support se-
quential pattern for rule generalization. A regular expres-
sions containing don’t care symbols is an example of se-
quential pattern. Sequential patterns can be generalized by 

alignment technique or by sequential pattern mining (e.g. 
Stalker). Meanwhile, different attributes may have the same 
display format called common format (CT). Most IE sys-
tems take the advantage of attribute order to extract them. 
Others, e.g. DeBYE and Stalker, add more constraints to 
form a longer extraction rule. What follows is that the ex-
traction precision can be greatly decreased in case of miss-
ing attributes or multiple-order attributes.  

UnTokenized Attributes (UTA): So far, we’ve seen three 
approaches to handle untokenized attributes. The first one 
is through post-processing. For example, the split operator 
in W4F offers regular expressions and constraints to ad-
dress finer pieces of data. The second one is by contextual 
rules instead of delimiter-based rules. As proposed by 
Softmealy, the idea of separators as well as contextual rules 
helps user address data of any granularity. Finally, multi-
ple-level encodings also allow IE systems to address data of 
different granularity without sacrificing the advantage of 
abstraction for rule generalization as in IEPAD and OLERA. 

5.2 Technique-based comparison 
In this section, we use the criteria suggested in Section 3.2 
to compare and evaluate IE systems from the perspective of 
the underlying techniques used. The results are shown in 
Table 2 and discussed below. 

Scan Pass: This comparison refers to the number of scan 
passes required over an input document for information 
extraction. Most WI systems design the extractor to scan the 
input document once, referred to as single-pass extractor, 
while others (e.g. STALKER and multi-pass SoftMealy) scan 
the input document several times to complete the extrac-
tion. The extractor of DEByE also needs multiple passes to 
extract each atomic attributes. Generally speaking, single-
pass wrappers are more efficient than multi-pass wrappers. 
However, multi-pass wrappers are more effective at han-
dling data objects with unrestricted attribute permutations 
or complex object extraction. SRV and Rapier can only gen-
erate single slot rules, so the extractor needs to make multi-
ple passes over the input page to extract relevant data.  

Extraction Rule Type: Most WI systems use extraction rules 
that are represented as regular grammars to identify the 
beginning and end of the relevant data, whereas Rapier and 
SRV use extraction rules expressed using first order logic. 
Regular expression rules are powerful for semi-structured 
inputs, especially template-based pages, since we usually 
find common tokens surrounding the data to be extracted. 
Even when no common tokens exist, we can induce rules 
by incorporating a generalization hierarchy of tokens as 
background knowledge (e.g. Softmealy). However, for free-
text inputs, where very few common tokens can be found, 
we need to incorporate more features, e.g. digit density, 
length, POS tags, etc. to generalize the common characteris-
tics among various tokens. That’s why first-order logic 
rules are used for free-text IE tasks (e.g. SRV and Rapier).  
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Features Used: Earlier IE systems are designed to handle 
non-template based Web pages, say computer science de-
partment Web pages from various universities. Therefore, 
they have used both HTML tags and literal words as delim-
iter-based constraints. For template-based Web pages, it is 
possible to use DOM tree paths to denote a specific piece of 
information in a Web page. For example, W4F, XWrap and 
other commercial products use DOM tree paths to address 
a Web page. Since the data to be extracted are often co-
located in the same path of the DOM tree, this makes the 
rule learning process much easier. For free text information 
extraction, natural language processing techniques such as 
part-of-speech tagger and Word-Net semantic classes are 
used as additional features. SRV also uses orthographic 
features, token’s length, and link grammars. Finally, EX-
ALG exploits statistical information of the tokens in Web 
pages to generate their wrappers.  

Learning Algorithm: Wrappers in programming-based WI 
systems are written by hand and take as input a specifica-
tion that is declaratively stated where the data of interest is 
located in the HTML pages and how the data is packaged 
into objects. Thus, no learning algorithms are used in these 
systems. Rapier is a bottom-up relational learning system 
inspired by ILP methods, while SRV is a top-down rela-
tional algorithm. Whisk is a top-down covering learning 
system. Its patterns have two components that specify the 

context and the exact delimiters of the phrase to be extracted. 
DEByE and NoDoSE all require a large amount of support 
from users to model the data in the documents. They focus 
on the interface design and apply very simple methods to 
learn extraction patterns, i.e. common prefix and suffix of 
the data values to be extracted. On the other hand, Stalker 
and SoftMealy use Ad-hoc generalization methods for 
learning extraction rules. They focus on the learning tech-
niques and the extractor architecture and use a hierarchy of 
token classes for token generalization, which is quite differ-
ent from NoDoSE and DEByE where the extraction rules 
are simply based on superficial or literal words.  

Semi-supervised or unsupervised IE systems mainly ap-
ply data mining techniques for various pattern discoveries. 
IEPAD discovers regular and adjacent maximum patterns 
using PAT trees and string alignment techniques, while 
DeLa further discovers nested structures from continuous 
repeated (C-repeated) patterns. OLERA applies approxi-
mate string matching and string alignment techniques fol-
lowing the users’ enclosing, drill-down/roll-up operations. 
RoadRunner analyzes input pages by string comparison 
using the ACME technique. EXALG exploits statistical in-
formation to generate the template and schema of Web 
pages by using equivalence classes and differentiating roles 
techniques. DEPTA applies a mining technique and partial 
tree alignment to mine data records in a Web page. In com-
parison, IEPAD and DEPTA discover repeated patterns 

TABLE 2
ANALYSIS BASED ON THE TECHNIQUES USED 

Tools Scan Pass Extraction 
Rule Type Features Used Learning Algorithm Tokenization 

Schemes 

Minerva Single Regular exp. HTML tags/Literal words None Manually 

TSIMMIS Single Regular exp. HTML tags/Literal words None Manually 

WebOQL Single Regular exp. Hypertree None Manually 

W4F Single Regular exp. DOM tree path addressing None Tag Level 

XWRAP Single Context-Free DOM tree None Tag Level 

RAPIER Multiple Logic rules Syntactic/Semantic ILP (bottom-up) Word Level 

SRV Multiple Logic rules Syntactic/Semantic ILP (top-down) Word Level 

WHISK Single Regular exp. Syntactic/Semantic Set covering (top-down) Word Level 

NoDoSE Single Regular exp. HTML tags/Literal words Data Modeling Word Level 

DEByE Multiple Regular exp. HTML tags/Literal words Data Modeling Word Level 

WIEN Single Regular exp. HTML tags/Literal words Ad-hoc (bottom-up) Word Level 

STALKER Multiple Regular exp. HTML tags/Literal words Ad-hoc (bottom-up) Word Level 

SoftMealy Both Regular exp. HTML tags/Literal words Ad-hoc (bottom-up) Word Level 

IEPAD Single Regular exp. HTML tags Pattern Mining, String Alignment Multi-Level 

OLERA Single Regular exp. HTML tags String Alignment Multi-Level 

DeLa Single Regular exp. HTML tags Pattern Mining Tag Level 

RoadRunner Single Regular exp. HTML tags String Alignment Tag Level 

EXALG Single Regular exp. HTML tags/Literal words Equivalent Class and Role 
Differentiation by DOM tree path Word Level 

DEPTA Single Tag Tree HTML tags treeHTML tags Pattern Mining, String comparison, 
Partial tree alignment Tag Level 

  



www.manaraa.com

CHANG ET AL.: A SURVEY OF WEB INFORMATION EXTRACTION SYSTEMS 15 

 

from one HTML page, while Roadrunner and EXALG dis-
cover repeat patterns from multiple HTML pages. 

Tokenization Schemes: Wrappers in Minerva and TSIM-
MIS are written by hand, so they do not need to tokenize 
the input pages. Most WI systems for Web pages support 
tag-level tokernization. Some systems even support word-
level tokernization, e.g. supervised WI systems and EX-
ALG. WebOQL, W4F, XWrap, RoadRunner and DeLa use a 
tag-level encoding scheme to translate the input training 
pages into tokens. Also, the input HTML page in W4F and 
XWrap has been parsed to construct a parse tree that re-
flects its HTML tags hierarchy following the document ob-
ject model (DOM). Finally, IEPAD and OLERA allow multi-
ple levels of encodings for input training pages. 

5.3 Automation degree-based comparison 
In this section, we use the features suggested in Section 3.3 
to compare and evaluate IE systems from the automation 
degree prospective. The results are shown in Table 3 and 
discussed below. 

User Expertise: Manual IE systems require users of pro-
gramming background to write correct extraction rules. 
Supervised and semi-supervised WI systems require users 
to label exact or part of the data to be extracted, thus there 
is no special expertise needed. For unsupervised systems, 
they require no assistant from users (except for pattern se-

lection). For IEPAD and OLERA, although they require no 
labeling before pattern discovery, post-labeling is needed to 
sift desired data, while the work of distinguishing template 
tokens from data tokens is accomplished by unsupervised 
IE systems. Strictly speaking, the label of the data extracted 
by unsupervised IE systems remains to be assigned, and 
only DeLa has dealt with this problem. 

Fetching Support: Most IE systems focus on extraction rule 
generalization and use a set of pages that are manually 
downloaded as training examples. Some systems specifi-
cally support page fetching in wrapper construction. For 
example, W4F has a component called RetrieveAgent that is 
used to retrieve a Web source by inputting its URL. Also, 
the syntactical normalizer component of XWrap accepts an 
URL entered by the user, issues an HTTP request to the re-
mote server identified by the URL and fetches the corre-
sponding Web page. Other systems also propose new tools 
for page fetching support.  For instance, WNDL is a lan-
guage proposed by Hsu et al. to describe Web navigation 
for page fetching support with Softmealy and IEPAD [45]. 
ASByE, a member of DEByE family, is a tool for collecting 
static and dynamic Web pages. DeLa uses the existing Hid-
den Web crawler, HiWe, to automatically collect the labels 
of the elements from Web sites and send queries to the Web 
site. 

Output/API Support: Outputting the extracted relevant 

TABLE 3
ANALYSIS BASED ON AUTOMATION DEGREE 

Tools User Expertise Fetch support Output/API 
Support Applicability Limitation 

Minerva Programming No XML High Not restricted 

TSIMMIS Programming No Text High Not restricted 

WebOQL Programming No Text High Not restricted 

W4F Programming Yes XML Medium Not restricted 

XWRAP Programming Yes XML Medium Not restricted 

RAPIER Labeling No Text Medium Not restricted 

SRV Labeling No Text Medium Not restricted 

WHISK Labeling No Text Medium Not restricted 

NoDoSE Labeling No XML, OEM Medium Not restricted 

DEByE Labeling Yes XML, SQL DB Medium Not restricted 

WIEN Labeling No Text Medium Not restricted 

STALKER Labeling No Text Medium Not restricted 

SoftMealy Labeling Yes XML, SQL DB Medium Not restricted 

IEPAD Post labeling 
Pattern selection No  Text Low Multiple-records page 

OLERA Partial Labeling No XML Low Not restricted 

DeLa Pattern selection Yes Text Low Multiple-records page, 
More than one page 

RoadRunner Pattern selection Yes XML Low More than one page 

EXALG Pattern selection No Text Low More than one page 

DEPTA Pattern selection No SQL DB Low Multiple-records pages 
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data is comparably simple, so most IE systems support it. 
The systems Minerva, W4F, XWrap, NoDoSE, DEByE, 
SoftMealy, OLERA and RoadRunner output the extracted 
data in a XML format. Also, NoDoSE supports other for-
mats, such as OEM, and DEByE supports SQL database 
output format. On the other hand, API support is important 
since it is the connection between the generated wrapper 
and information integration systems. Programming-based 
IE systems have API supports, while others do not specifi-
cally mention this in their papers.  

Applicability: As described in section 3.3, applicability 
concerns how easy these approaches can be extended to 
other task domains. A key factor for high applicability is 
that domain-specific information is separate from the un-
derlying learning mechanism. For the various IE tasks we 
discussed above, manual systems and supervised systems 
have good modularity while semi-supervised or unsuper-
vised systems have less applicability since they have 
pushed the domain specific information to the limit for 
high automation degree.    

Limitation: Finally, we consider the requirements for mul-
tiple data-records or multiple training pages input. Al-
though, we can regard such requirements as different input 
IE task, we view them as a limitation of these approaches 
for various WI systems to be compared in the same task 
domain. Take template-page IE for example, an IE system 
that needs multiple-records training Web pages can not be 
applied to a site that includes Web pages of a single record. 
As summarized in Table 3, there is no restriction about the 
content and the number of training pages for manual and 
supervised IE systems. IEPAD, DeLa and DEPTA require 
input pages with multiple-records to generate a wrapper. 
DeLa, RoadRunner, EXALG require more than one training 
page as input for their approaches to work.  

5.4 Overall comparison 
Although we have compared various IE systems from three 
dimensions, there are correlations among these criteria. For 
example, template-based pages have higher automation 
degree than non-template pages and free-text documents 
since the inputs present structured framework that can be 
discovered by unsupervised approaches. However, this 
does not imply that data extraction from template-based 
pages is easier than other pages. Instead, new problems 
arise, e.g. distinction between template and data tokens, 
and label assignment to data tokens.  

As shown in Figure 15, manual IE systems can be applied 
to all kinds of inputs as long as proper features are provided 
by the systems, though it depends on the programmers’ tech-
niques to compose the extraction rules. Semi-supervised and 
unsupervised IE systems can be applied only to template-
based pages since their success rely on the existence of tem-
plate. In addition, we also see that unsupervised systems usu-
ally apply superficial features such as HTML tags for regular 
expression rules since they are targeted for template-based 
pages. For IE from cross-site pages and free texts, semantic 
features (e.g.  orthographic features, token’s length, etc.) are 
required since there are less common tags and words among 
the input documents. 

For a practitioner, one wants to know which techniques are 
effective, good recall and precision. Since these systems deal 
with different data and have different features, it is not possi-
ble to evaluate them in a consistent way. Thus, we can only 
compare them from their applicability. Semi-supervised and 
unsupervised IE systems have embedded in their systems 
heuristics observed from template pages, e.g. contiguous data 
area (IEPAD), non-contiguous data records (DEPTA), nested 
data objects (DeLa). Since there are many variations on the 
Web, there is no guarantee such techniques work for all Web 
pages, though we do find that newly proposed approaches 
can solve more pages than past approaches. As for supervised 
approaches, since data to be extracted are labeled by users, 
their applicability is comparatively better than unsupervised 
systems. Still, there is no guarantee for the success of rule in-
duction.  

For a researcher, one wants to know which technique to 
apply when tailoring current systems to a new IE task domain. 
As discussed above, the techniques used in unsupervised IE 
systems is hard to extend to free texts and even non-template 
pages since many heuristics are applicable only to template-
based pages. For supervised approaches, we have seen well-
known learning techniques (e.g. ILP and set covering in SRV, 
WHISK, etc.) as well as Ad-hoc learning (bottom-up generali-
zation in Stalker, Softmealy, etc.). Ad-hoc learning techniques 
are faster in learning by incorporating a token hierarchy for 
generalization.  We appreciate supervised approaches since we 
can add new features to existing systems without modifying 
the learning algorithms. Although only ILP and set covering 
algorithms are used now, it would be interesting to see other 
learning algorithms (e.g. support vector machine, etc.) to be 
applied. 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, we survey the major IE tools in the literature 
and compare them in three dimensions: the task domain, 
the automation degree, and the techniques used. A set of 
criteria are proposed for the comparison and evaluation in 
each dimension. The criteria of the first dimension explain 
why an IE system fails to handle some Web sites of particu-

Task  
Domain 

    Template    Non-template    Free-text 
     pages            pages 

Features
Used 

Sem
antic    Literal  

D
om

-tree 
Syntactic    w

ords      H
TM

L tags 

 
Manual /  

Supervised 
Approaches 
___________ 
Logic Rules 
Regular Exp. 

 
Manual / 

Supervised  
Approaches 
___________ 

  
Regular Exp. 

 

Manual /  
Supervised / 
Semi-super / 

Unsupervised 
___________ 

 
Regular Exp. 

 

Fig. 15. Overall comparison.  
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lar structures. The criteria of the second dimension measure 
the degree of automation for IE systems. The criteria of the 
third dimension measure the performance of IE systems. 
We present our taxonomy of WI systems from the users’ 
viewpoint and compare important features of WI systems 
that affect their effectiveness.  

There are several points to make from the survey. First, we 
see the trend of developing highly automatic IE systems, 
which saves not only the effort for programming, but also the 
effort for labeling. Thus, although the creation of Web services 
provides another way for data exchange and information inte-
gration, it may not be the best choice since the involvement of 
programmer is unavoidable. On the other hand, not all IE 
tasks can be wrapped by fully automatic IE systems. Unsu-
pervised approaches can only support template pages. The 
extension of such systems to non-template page extraction 
tasks is very limited. In contrast, supervised approaches, al-
though require annotations from users, extend well to non-
template page extraction if proper features are selected for 
extraction rules.  

The technique of information extraction can be applied 
to non-HTML documents such as medical records and cur-
riculum vitae to facilitate the maintenance of large semi-
structured documents. In the future, information extraction 
from cross-website pages will become more important as 
we move toward semantic Web. In this survey, we only fo-
cus on data extraction from Web documents. Page fetching 
support and extracted data integration (or schema map-
ping) from various data sources are two research topics that 
are not thoroughly studied in this paper. A new research 
topic on integration of search forms has also drawn many 
attentions [46], [47]. 
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